Эхолокация у животных. Как ориентируются летучие мыши Как летучая мышь видит темноте

В природе большинство мышей живет не более 18-ти месяцев. Тем не менее, столь долгий для небольших животных срок позволяет мыши пройти через несколько жизненных этапов. Развитие детеныша после появления, происходит в течение 3-х недель, когда они питаются молоком и постепенно обрастают шерстью, которой изначально не имеют.

До 1,5 месячного возраста, мышата кормятся отчасти принесенными матерью припасами, отчасти, самостоятельными «набегами». К этому времени у них уже есть шерсть, а глаза открываются. Пользуются в основном обонянием и ультразвуком.

В возрасте 1,5-2-х месяцев мышата становятся самостоятельными и покидают гнездо, отправляясь на поиски собственного места гнездования. В течение этого времени они пользуются тропами, которые оставили для них родители и прокладывают свои собственные.

Перемещение мышей происходит по одним и тем же маршрутам, благодаря устойчивым запахам феромонов, выделяющихся вместе с мочой. Это свойство, в свою очередь, облегчает поиск и уничтожение мышей. Моча также служит своеобразным сигнализатором. Когда мышь испытывает страх, запах становится другим и остальные мыши, приближаясь к месту опасности, скорее всего обойдут его стороной.

На лапках каждой особи также есть специальные железы, которыми они «помечают» территорию. Запах этих желез передается любому предмету, которого они коснуться.

В природе мыши активны круглый год, но зимой стараются найти укромное место в виде стога сена, глубокой, до 60-ти см. норы и т.д. Низкие температуры губительны для мышей, поэтому они ищут теплое место с большим количеством близлежащего корма. Эта же причина заставляет мышей искать соседства с человеком в его домах и хоз. постройках. Большое количество мышей живет в хлевах и сараях со скотиной.

Мыши обычно обитаю в жилище человека только зимой, а не летний период переселяются в норы на прилегающей территории, продолжая набеги на запасы круп и злаков.

В доме или на складе мышь в первую очередь определяет источники пищи. Чаще всего она выбирает наиболее статичные и богатые запасы, которые позволят ей питаться долгое время. Это банки и пакеты с зернами, крупами, сухарями. Особенно интересны для мышей злаковые. В отсутствии такой еды, мышь переключается на мыло, свечи, оплетку кабелей в бытовых приборах, проводку, корнеплоды, сушеные овощи и фрукты, орехи и т.д. Мыши способны есть практически все, чтобы поддерживать быстродействующий метаболизм.

В жилищах человека мыши размножаются круглый год и живут 2-3 года. Самка, приносящая в среднем по 10 приплодов за год, производит на свет огромное количество мышей. По скорости размножения эти млекопитающие являются одними из самых продуктивных. Это и обусловливает применение мышей в современных научных исследованиях.

Мыши легко попадаются в различные капканы и приманки. Мышеловки являются достаточно эффективным способом контроля их популяции, если она не слишком велика. При массовом заражении помещения мышами, эффективность такой борьбы существенно снижается. На первый план выходят отравленные приманки, которые мыши активно поедают.

Период активности мышей в природе – темное время суток. Осенью мыши часто выбегают из нор при свете дня. Живущие по соседству с человеком грызуны часто сохраняют активность в течение всего дня и даже при искусственном освещении. Мыши способны общаться при помощи ультразвуковых волн, не слышимых человеческому уху. Именно так самцы привлекают самок для спаривания.

Слух мыши очень чувствителен к звукам и способен различать частоты до 100 кГц. Этот показатель больше человеческого в 5 раз. Обоняние мышей отлично помогает им ориентироваться в пространстве и выбирать направление движения. Зрение у животных развито слабо и ориентировано на поиск дальних объектов. Вблизи мыши практически слепы, но отлично ориентируются в пространстве, благодаря запахам и звукам.

Источник задания: Решение 4255. ОГЭ 2017 Физика, Е.Е. Камзеева. 30 вариантов.

Задание 20. Умение великолепно ориентироваться в пространстве у летучих мышей связано с их способностью излучать и принимать

1) только инфразвуковые волны

2) только звуковые волны

3) только ультразвуковые волны

4) звуковые и ультразвуковые волны

Решение.

Летучие мыши обычно живут огромными стаями в пещерах, в которых они прекрасно ориентируются в полной темноте. Влетая и вылетая из пещеры, каждая мышь издаёт неслышимые нами звуки. Одновременно эти звуки издают тысячи мышей, но это никак не мешает им прекрасно ориентироваться в пространстве в полной темноте и летать, не сталкиваясь друг с другом. Почему летучие мыши могут уверенно летать в полнейшей темноте, не натыкаясь на препятствия? Удивительное свойство этих ночных животных - умение ориентироваться в пространстве без помощи зрения - связано с их способностью испускать и улавливать ультразвуковые волны.

Для того, чтобы сигнал был препятствием отражён, наименьший линейный размер этого препятствия должен быть не меньше длины волны посылаемого звука. Использование ультразвука позволяет обнаружить предметы меньших размеров, чем можно было бы обнаружить, используя другие звуковые частоты. Кроме того, использование ультразвуковых сигналов связано с тем, что с уменьшением длины волны легче реализуется направленность излучения, а это очень важно для эхолокации.

Тысячи летучих мышей, принадлежащих к мексиканскому подвиду бразильского складчатогуба, обитающие в Техасе, распевают во время полета песни, используя сложнейшие сочетания слогов. Правда, человеческое ухо не в состоянии оценить вокальные данные и мастерство рукокрылых, так как те общаются на ультразвуковых частотах.

Биолог Майкл Смотерман из Техасского университета сельского хозяйства и механики попытался изучить способы организации слогов в песнях летучих мышей и связать их коммуникативные способности с определенными зонами мозга.

«Если нам удастся выяснить, какие именно участки мозга летучих мышей ответственны за коммуникацию, то мы сможем лучше разобраться в том, как именно генерирует и организует сложные последовательности коммуникативных сигналов человеческий мозг, — говорит ученый. — И, разобравшись в работе человеческого мозга, мы сможем предложить различные способы решения проблем людям, страдающим нарушениями речи».

В лаборатории Смотермана исследовали поведенческий и физиологический аспекты передачи информации у летучих мышей. В первом случае изучали сезонные вариации и отличия при передаче информации мужскими и женскими особями, а во втором пытались локализовать зоны мозга, активные во время коммуникации.

Бразильские складчатогубы при общении издают звуковые колебания с более высокими частотами, чем те, которые способно улавливать человеческое ухо (диапазон восприятия человека 16 — 20000 Гц). Правда, люди могут слышать обрывки песен летучих мышей, если те пропевают часть фразы более «низким голосом».

Общение летучих мышей на высоких частотах обусловлено их способностью к эхолокации. Они создают ультразвуковые волны в диапазоне частот от 40 до 100 кГц и ориентируются в пространстве, определяя с помощью отраженных волн направления и расстояния до окружающих предметов. Чем выше частота звука, тем более мелкие детали могут различать летучие мыши и тем точнее они выстраивают траекторию полета.

В исследовании принимали участие 75 особей бразильского складчатогуба, живущие в лаборатории Смотермана. Исследуемые экземпляры не изолировали от дикой природы, а собирали в различных строениях вроде церквей и школ. По словам ученого, эти летучие мыши совершенно не агрессивны и благодаря дружелюбному характеру представляют собой прекрасные образцы для исследования.

Зов бразильского складчатогуба, как выяснилось, включает от 15 до 20 слогов.

Каждый самец при ухаживании поет свою собственную песню. Хотя «мелодии» песен ухаживания у всех звучат приблизительно одинаково, исполнители составляют индивидуальные воззвания, сочетая различные слоги. Помимо песен, обращенных к представителям противоположного пола, летучие мыши используют сложные голосовые сообщения для того, чтобы опознавать друг друга, а также для обозначения социального статуса, определения территориальных границ, при воспитании потомства и при противодействии особям, вторгшимся на чужую территорию.

«Ни одно другое млекопитающее, кроме человека, не обладает способностью общаться с помощью столь сложных голосовых последовательностей», — говорит Смотерман.

Песни летучих мышей напоминают песни птиц. За многие годы исследований ученым удалось определить участки мозга птиц, ответственных за пение, но, по словам экспертов, мозг птиц сильно отличается от мозга млекопитающих, и поэтому довольно трудно использовать знания об особенностях голосовой коммуникации у пернатых для понимания особенностей человеческой речи.

Мозг млекопитающих устроен приблизительно одинаково, и у летучих мышей имеется множество тех же структур, которые характерны для мозга человека. Поэтому выводы об особенностях голосовой коммуникации у людей вполне могут быть сделаны на основании изучения вокальных сообщений, посылаемых летучими мышами.

«Голосовой центр, ответственный за организацию сложных последовательностей слогов, у летучих мышей несколько выше, и нам пока что не удалось точно определить, где именно он расположен, — говорит Смотерман. — В настоящее время для определения активных во время пения зон мозга мы применяем молекулярный метод».

В дальнейшем ученые надеются применить полученные ими данные при решении проблем, связанных с нарушениями речи. По словам учёного, представление о том, что человеческая речь является уникальной особенностью, сильно ограничивает исследования в данной области. «По сравнению с достижениями других направлений неврологии мы плетемся в конце, поскольку пока еще не вполне разобрались в основополагающих вопросах функционирования голосовых коммуникаций у людей», — сетует Смотерман.

Хотя летучие мыши прекрасно ориентируются в пространстве с помощью ультразвука, этот механизм прекрасно работает лишь на небольших расстояниях. Как показали , при дальних перелетах рукокрылые используют магнитное поле Земли благодаря «встроенному магнитному компасу».

Летучие мыши – единственные млекопитающие, освоившие воздушную среду благодаря наличию у них крыльев. Кроме того, летучая мышь не является родственницей наземной ни по происхождению, ни по образу жизни.

К какому виду относится летучая мышь? Она относится к отряду рукокрылых , название которого говорит само за себя. Почему летучих мышей называют мышами? она была названа за отдалённое внешнее сходство с сухопутным грызуном и умение издавать звуки, похожие на мышиный писк.

Внешний вид

Летучая мышь, описание: большая часть тела животного отводится на крылья . Если не брать их во внимание, то можно отметить миниатюрное туловище с короткой шеей и вытянутой головой. Ротовая щель зверьков крупная , через неё виднеются острые зубы.

Одни виды летучих мышей очаровывают людей миловидной мордочкой, другие пугают необычной формой носа , несоразмерно большими ушами и удивительными наростами на голове.

Наиболее симпатичным рукокрылым животным семейства крыланов считается фруктовая собака : у неё большие открытые глаза и вытянутый нос, похожий на лисий. Интересно, что названия некоторым были даны исходя из формы носа животных: свиноносая, подковоносая, гладконосая.

У белой летучей мыши на мордочке имеется своеобразный «рог», придающий носу форму лепестка. Благодаря этому приспособлению направленные вперёд ноздри животного быстрее и эффективнее улавливают запахи .

Не менее специфичной внешностью обладает бульдоговая мышь : на её мордочке в поперечном направлении располагается хрящевая складка, идущая над носом от одной ушной раковины к другой. Хрящевой валик сводит вместе края ушных раковин, увеличивая их площадь для более совершенного слуха, необходимого для ориентировки в пространстве во время полёта.

По мордочке животного можно «прочитать» об образе жизни и о даже питании мыши. Например, любителям фруктов не нужны мощные локаторы, необходимые летучим представителям, рассекающим окрестности по ночам. Зато ноздри у них более широкие: пищу они разыскивают, ориентируясь на запахи .

Фото

Как выглядит летучая мышь: фото смотрите ниже:




Строение

Птицы приспособились к полёту благодаря облегчённым ячеистым костям, воздушным мешкам в лёгких и разнородному по строению и функции перьев покрову. У летающих рукокрылых всего этого нет , да и кожные перепонки едва ли можно назвать крыльями.

Как летают летучие мыши? Полёт мышей подобен полёту летательного аппарата Леонардо да Винчи , который перенял у природы идею строения крыла летучего млекопитающего.

Сплошная, непронизываемая воздухом кожная перепонка «накрывает» воздушные массы сверху, что позволяет зверькам отталкиваться от них и лететь.

Скелет и крылья

Скелет летучей мыши имеет свои особенности. Конечности летучих мышей видоизменены: они служат для крыла костяком . Плечевая кость у этих животных короткая, а кости предплечья и 4 последних пальца удлинены с целью увеличения площади летательной «мантии».

От шеи до кончиков пальцев зверьков натянута кожно-фиброзная складка. Большой палец с цепким коготком не включён в крыло, он необходим животному для хватания . Между задними лапками и длинным хвостом натянута задняя (межбедренная) часть перепонки.

Посмотрите, как выглядят крылья летучей мыши, на фото ниже:



Полёт

Рука с крылом приводится в движение несколькими парными мышцами верхнего пояса, которые для снижения энергозатрат на полёты прикреплены не к грудине, а к фиброзной основе крыла. Киль грудины зверьков уступает по мощности птичьему: к нему прикрепляется только одна мышца, необходимая для полёта, – большая грудная.

Позвоночник у летучих млекопитающих более подвижен, чем у птиц . Он позволяет мышам быть более манёвренными вне воздушной среды.

Передвижение по земле

Как передвигается летучая мышь? Эволюция лишила рукокрылых крепких костей нижнего пояса, бедра и голени, оставив за ними право большую часть жизни летать.

Некоторые виды мышей, например, вампировые имеют более крепкие бедренные кости и способны ходить по земле . Опорой для них служит утолщённая кожа подушечек лап. Крыланы передвигаться подобным образом не могут и делают это крайне неуклюже.

Размеры и вес

Длина крохотного тельца зверьков, населяющих Россию, обычно не превышает 5 см , размах крыльев самых маленьких из них составляет 18 см. Масса рекордсменов-малюток – 2-5 г.

Небольшими размерами обладают ушаны, белые и свиноносые мышки. Представитель последнего вида считается одним из самых маленьких млекопитающих на Земле.

Крупные особи весят до килограмма. Расстояние между кончиками пальцев передних лап при расправленных крыльях может достигать полутора метров, а длина тела – 40 см. Настоящими исполинами среди рукокрылых считаются крыланы, Южноамериканские ложные вампиры.

Органы чувств

Реакция летучих мышей на свет: сетчатка летучих мышей лишена колбочек – рецепторов, ответственных за дневное видение.

Зрение их является сумеречным и обеспечивается палочками. Поэтому днём животные вынуждены спать , так как при дневном свете они видят плохо.

У некоторых представителей глаза прикрыты причудливыми кожными складками. Это ещё раз подтверждает гипотезу о том, что ориентируются в пространстве мыши не при помощи зрительного анализатора . У близких родственников летучих мышей, крыланов, также относящихся к отряду рукокрылые, колбочки имеются. Этих животных можно встретить и днём.

Второстепенная роль для зверьков зрительного анализатора была выявлена в ходе простого эксперимента : когда животным завязывали глаза, в окружающей обстановке они ориентироваться не переставали. Когда то же самое повторили с ушами, мыши стали натыкаться на стены и предметы, находящиеся в комнате.

Летучие мыши приносят несомненную пользу садово-огородным и фермерским хозяйствам. В тёмное время суток, когда неактивны птицы, они массово уничтожают не только насекомых-вредителей, но и мелких грызунов. Читайте наши статьи о том, эти загадочные животные и какова их .

Как же мыши видят в темноте?

Как летучие мыши ориентируются в темноте? Какие звуки издают летучие мыши? Удивительная способность рукокрылых летать и добывать пищу без участия зрения была раскрыта после того, как при помощи чувствительных датчиков удалось записать ультразвуковые сигналы , которые издают животные во время полёта.

Ультразвук летучих мышей, который неслышен человеческим ухом, отражается от окружающих объектов, находящихся в радиусе 15 метров, возвращаются к зверьку, собираются ушной раковиной и анализируются внутренним ухом. Слух у животных тонкий .

Питание

Летучие млекопитающие имеют свои предпочтения в еде . Исходя из того, какой продукт у животного является излюбленным, выделяют:

  • насекомоядных;
  • плотоядных;
  • фруктоядных или вегетарианцев;
  • рыбоядных мышей;
  • вампиров .

Прочитайте интересную статью о том, и как охотятся мыши в природе.

Сон

Спать представители рукокрылых предпочитают вниз головой . Коготками задних лапок они цепляются за горизонтальную перекладину или сучок дерева, прижимают к телу крылья и засыпают. Почему летучие мыши спят вниз головой (вверх ногами)? Сидя они не спят: слабые кости нижних конечностей не выдерживают многочасовую нагрузку на них во время сна.

Спящие летучие мыши, почуяв опасность, расправляют крылья, разжимают коготки задних лап и улетают, не тратя время на вставание из положения лёжа или сидя.

Размножение

Как размножаются и рождаются летучие мыши? Перед зимней спячкой животные открывают брачный сезон ( ?). Через несколько месяцев после спаривания на свет появляется 1-2 мышонка , которых мать вскармливает молоком в течение 2 недель.

Детеныши летучей мыши, находятся под опекой матери 3 недели , после чего приступают к самостоятельной жизни. Спросите, сколько живут летучие мыши, есть данные, что рукокрылые могут прожить до 30 лет .

Экзотика по соседству

Интересные факты о летучих мышах, смотрите в видео ниже:

Летучие мыши обычно живут огромными стаями в пещерах, в которых они прекрасно ориентируются в полной темноте. Влетая и вылетая из пещеры, каждая мышь издает неслышимые нами звуки. Одновременно эти звуки издают тысячи мышей, но это никак не мешает им прекрасно ориентироваться в пространстве в полной темноте и летать, не сталкиваясь друг с другом. Почему летучие мыши могут уверенно летать в полнейшей темноте, не натыкаясь на препятствия? Удивительное свойство этих ночных животных – умение ориентироваться в пространстве без помощи зрения – связано с их способностью испускать и улавливать ультразвуковые волны.

Оказалось, что во время полёта мышь излучает короткие сигналы на частоте около 80 кГц, а затем принимает отражённые эхо-сигналы, которые приходят к ней от ближайших препятствий и от пролетающих вблизи насекомых.

Для того, чтобы сигнал был препятствием отражён, наименьший линейный размер этого препятствия должен быть не меньше длины волны посылаемого звука. Использование ультразвука позволяет обнаружить предметы меньших размеров, чем можно было бы обнаружить, используя более низкие звуковые частоты. Кроме того, использование ультразвуковых сигналов связано с тем, что с уменьшением длины волны легче реализуется направленность излучения, а это очень важно для эхолокации.

Реагировать на тот или иной объект мышь начинает на расстоянии порядка 1 метра, при этом длительность посылаемых мышью ультразвуковых сигналов уменьшается примерно в 10 раз, а частота их следования увеличивается до 100–200 импульсов (щелчков) в секунду. То есть, заметив объект, мышь начинает щелкать более часто, а сами щелчки становятся более короткими. Наименьшее расстояние, которое мышь может определить таким образом, составляет примерно 5 см.

Во время сближения с объектом охоты летучая мышь как бы оценивает угол между направлением своей скорости и направлением на источник отражённого сигнала и изменяет направление полёта так, чтобы этот угол становился все меньше и меньше.

Может ли летучая мышь, посылая сигнал частотой 80 кГц, обнаружить мошку размером 1 мм? Скорость звука в воздухе принять равной 320 м/с. Ответ поясните.

Конец формы

Начало формы

Для ультразвуковой эхолокации мыши используют волны частотой

1) менее 20 Гц

2) от 20 Гц до 20 кГц

3) более 20 кГц

4) любой частоты

Конец формы

Начало формы

Умение великолепно ориентироваться в пространстве связано у летучих мышей с их способностью излучать и принимать

1) только инфразвуковые волны

2) только звуковые волны

3) только ультразвуковые волны

4) звуковые и ультразвуковые волны


Запись звука

Возможность записывать звуки и затем воспроизводить их была открыта в 1877 году американским изобретателем Т.А. Эдисоном. Благодаря возможности записывать и воспроизводить звуки появилось звуковое кино. Запись музыкальных произведений, рассказов и даже целых пьес на граммофонные или патефонные пластинки стала массовой формой звукозаписи.

На рисунке 1 дана упрощенная схема механического звукозаписывающего устройства. Звуковые волны от источника (певца, оркестра и т.д.) попадают в рупор 1, в котором закреплена тонкая упругая пластинка 2, называемая мембраной. Под действием звуковой волны мембрана колеблется. Колебания мембраны передаются связанному с ней резцу 3, острие которого чертит при этом на вращающемся диске 4 звуковую бороздку. Звуковая бороздка закручивается по спирали от края диска к его центру. На рисунке показан вид звуковых бороздок на пластинке, рассматриваемых через лупу.

Диск, на котором производится звукозапись, изготавливается из специального мягкого воскового материала. С этого воскового диска гальванопластическим способом снимают медную копию (клише). При этом используется осаждение на электроде чистой меди при прохождении электрического тока через раствор ее солей. Затем с медной копии делают оттиски на дисках из пластмассы. Так получают граммофонные пластинки.

При воспроизведении звука граммофонную пластинку ставят под иглу, связанную с мембраной граммофона, и приводят пластинку во вращение. Двигаясь по волнистой бороздке пластинки, конец иглы колеблется, вместе с ним колеблется и мембрана, причем эти колебания довольно точно воспроизводят записанный звук.

При механической записи звука используется камертон. При увеличении времени звучания камертона в 2 раза

1) длина звуковой бороздки увеличится в 2 раза

2) длина звуковой бороздки уменьшится в 2 раза

3) глубина звуковой бороздки увеличится в 2 раза

4) глубина звуковой бороздки уменьшится в 2 раза

Конец формы


2. Молекулярная физика

Поверхностное натяжение

В окружающем нас мире повседневных явлений действует сила, на которую обычно не обращают внимания. Сила эта сравнительно невелика, её действие не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с той или иной жидкостью без того, чтобы не привести в действие силы, которые называются силами поверхностного натяжения.Эти силы в природе и в нашей жизни играют немалую роль. Без них мы не могли бы писать перьевой ручкой, из неё сразу вылились бы все чернила. Нельзя было бы намылить руки, поскольку пена не смогла бы образоваться. Слабый дождик промочил бы нас насквозь. Нарушился бы водный режим почвы, что оказалось бы гибельным для растений. Пострадали бы важные функции нашего организма.

Проще всего уловить характер сил поверхностного натяжения у плохо закрытого или неисправного водопроводного крана. Капля растёт постепенно, со временем образуется сужение – шейка, и капля отрывается.

Вода оказывается как бы заключённой в эластичный мешочек, и этот мешочек разрывается, когда сила тяжести превысит его прочность. В действительности, конечно, ничего, кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя как растянутая эластичная плёнка.

Такое же впечатление производит плёнка мыльного пузыря. Она похожа на тонкую растянутую резину детского шарика. Если осторожно положить иглу на поверхность воды, то поверхностная плёнка прогнётся и не даст игле утонуть. По этой же причине водомерки могут скользить по поверхности воды, не проваливаясь в неё.

В своём стремлении сократиться поверхностная плёнка придавала бы жидкости сферическую форму, если бы не тяжесть. Чем меньше капелька, тем большую роль играют силы поверхностного натяжения по сравнению с силой тяжести. Поэтому маленькие капельки близки по форме к шару. При свободном падении возникает состояние невесомости, и поэтому дождевые капли почти строго шарообразны. Из-за преломления солнечных лучей в этих каплях возникает радуга.

Причиной поверхностного натяжения является межмолекулярное взаимодействие. Молекулы жидкости взаимодействуют между собой сильнее, чем молекулы жидкости и молекулы воздуха, поэтому молекулы поверхностного слоя жидкости стремятся сблизиться друг с другом и погрузиться вглубь жидкости. Это позволяет жидкости принимать форму, при которой число молекул на поверхности было бы минимальным, а минимальную поверхность при данном объёме имеет шар. Поверхность жидкости сокращается, и это приводит к поверхностному натяжению.

mob_info