Какое максимальное количество баллов у облачности. Облачность

Как известно, многие из отраслей промышленности, сельского хозяйства, транспортные службы очень сильно зависят от оперативности, своевременности и надежности прогнозов федеральной метеорологической службы. Заблаговременное оповещение об опасных и особо опасных явлениях погоды, своевременность подачи штормовых предупреждений – всё это необходимые условия для успешной и безопасной работы многих отраслей хозяйства и транспорта. Так, например, долгосрочные метеорологические прогнозы имеют решающий вес при организации сельхоз производств.

Одним из самых важных параметров, определяющих возможность прогнозирования опасных погодных условий, является такой показатель, как высота нижней границы облаков.

В метеорологии, высота облаков - это высота нижней границы облаков над поверхностью земли.

Для понимания важности проведения исследований по определению высоты облаков, следует упомянуть тот факт, что облака могут быть разных типов. Для различных типов облаков высота их нижней границы может варьироваться в некоторых пределах, причем, выявлено среднее значение высоты облаков.

Итак, облака могут быть:

Слоистые облака (средняя высота 623 м.)

Дождевые облака (средняя высота 1527 м.)

Кучевые (вершина) (1855)

Кучевые (основание) (1386)

Грозовые (вершина) (средняя высота 2848 м.)

Грозовые (основание) (средняя высота 1405 м.)

Ложные перистые (средняя высота 3897 м.)

Слоисто-кучевые (средняя высота 2331 м.)

Высокие кучевые (ниже 4000 м.) (средняя высота 2771 м.)

Высокие кучевые (выше 4000 м.) (средняя высота 5586 м.)

Перисто-кучевые (средняя высота 6465 м.)

Низкие перисто-слоистые (средняя высота 5198 м.)

Высокие перисто-кучевые (средняя высота 9254 м.)

Перистые (средняя высота 8878 м.)

Как правило, измеряют высоту облаков нижнего и среднего ярусов, не превышающую 2500 м. При этом, определяют высоту самых нижних облаков из всего их массива. При тумане, считают, что высота облаков равна нулю, и, в данном случае, в аэропортах измеряется “вертикальная видимость”.



Для определения высоты нижней границы облаков используется метод светолокации. В России, для этих целей выпускается измеритель , в котором в качестве источника импульсов и света используется импульсная лампа.

Высота нижней границы облаков методом светолокации с использованием ДВО-2 определяется при помощи замера времени, которое требуется световому импульсу для прохождения пути от излучателя света до облака и обратно, а также преобразования полученного значения времени в пропорциональное ему значение высоты облаков. Таким образом, световой импульс посылается излучателем и, после отражения, принимается приемником. При этом, излучатель и приемник должны быть расположены в непосредственной близости друг от друга.


Конструктивно измеритель ДВО-2 представляет собой комплекс из нескольких отдельных приборов:

Передатчика и приёмника,

Линий связи,

Блока измерительного,

Пульта дистанционного.


Измеритель высоты облаков ДВО-2 может работать автономно с блоком измерительным, в комплекте с дистанционным пультом и в составе автоматизированных метеорологических станций.

Передатчик состоит из импульсной лампы, питающих её конденсаторов и параболического отражателя. Отражатель вместе с лампой и конденсаторами установливается в кардановом подвесе, заключенном в корпусе с открывающейся крышкой.

Приемник состоит из параболического зеркала, фотоприемника, фотоусилителя, также установленных в кардановом подвесе и находящихся в корпусе с открывающейся крышкой.

Передатчик и приемник должны быть размещены вблизи основного пункта наблюдений. На взлетно-посадочных полосах, передатчик и приемник устанавливаются на ближайших приводных радиомаяках с обоих концов полосы.

Блок измерительный, предназначающийся для сбора и обработки информации, состоит из измерительной платы, высоковольтного блока и блока питания.

Пульт дистанционный включает плату клавиатуры и индикации и плату управления.

Сигнал от приемника по двухпроводной потенциально развязанной линии связи с однополярными сигналами и номинальным током(20±5)мА передается в измерительный блок, а оттуда - в пульт дистанционный. В зависимости от комплектации, вместо пульта дистанционного для обработки и отображения на дисплее оператора сигнал может передаваться на центральную систему метеостанции.

Измеритель высоты облаков ДВО-2 может работать или непрерывно или по мере необходимости. Пульт дистанционный имеет последовательный интерфейс RS-232, предназначающийся для работы с компьютером. Информация от измерителей ДВО-2 может передаваться по линии связи на дистанции до 8 км.

Обработка результатов измерения на измерительном блоке ДВО-2 включает:

Осреднение результатов по 8-ми измеренным значениям;

Исключение из числа замеров тех результатов, в которых наблюдается кратковременное пропадание отраженного сигнала. Т.е. исключение фактора «разрыва в облаках»;

Выдачу сигнала об «отсутствии облаков» в случае, если среди 15 проведенных наблюдений не набирается 8 значимых;

Исключение так называемых местников - ложных сигналов отражения.

Определение облачности производится визуально по 10-балльной системе. Если небо безоблачное или на нем имеется одно или несколько небольших облаков, занимающих менее одной десятой части всего небосвода, то облачность считается равной 0 баллов. При облачности, равной 10 баллам, все небо закрыто облаками. Если облаками покрыто 1/10, 2/10, или 3/10 частей небосвода, то облачность считается равной соответственно 1, 2, или 3 баллам.

Определение интенсивности света и уровня радиационного фона*

Для измерения освещенности применяются фотометры. По отклонению стрелки гальванометра определяется освещенность в люксах. Можно пользоваться фотоэкспонометрами.

Для измерения уровня радиационного фона и радиоактивной загрязненности используются дозиметры-радиометры ("Белла", "ЭКО", ИРД-02Б1 и др.). Обычно указанные приборы имеют два режима работы:

1) оценка радиационного фона по величине мощности эквивалентной дозы гамма-излучения (мкЗв/ч), а также загрязненности по гаммаизлучению проб воды, почвы, пищи, продуктов растениеводства, животноводства и т.д.;

* Единицы измерения радиоактивности

Активность радионуклида (А) - уменьшение числа ядер радионуклида за опреде-

ленный интервал времени:

[А] = 1 Ки = 3,7 · 1010 расп./с = 3,7 · 1010 Бк.

Поглощенная доза излучения (Д) составляет энергию ионизирующего излучения, переданную определенной массе облучаемого вещества:

[Д] = 1 Гр = 1 Дж/кг = 100 рад.

Эквивалентная доза облучения (Н) равна произведению поглощенной дозы на

средний коэффициент качества ионизирующего излучения (К), учитывающий биоло-

гическое действие различных излучений на биологическую ткань:

[Н] = 1 Зв = 100 бэр.

Экспозиционная доза (X) является мерой ионизирующего действия излучения, еди-

ницей которой является 1 Кu/кг или 1 Р:

1 Р = 2,58 · 10-4 Кu/кг = 0,88 рад.

Мощность дозы (экспозиционной, поглощенной или эквивалентной) - это отношение приращения дозы за определенный интервал времени к величине этого временного интервала:

1 Зв/с = 100 Р/с = 100 бэр/с.

2) оценка степени загрязненности бета-, гамма - излучающими радионуклидами поверхностей и проб почвы, пищи и др. (частиц/мин.·см2 или кБк /кг).

Предельно допустимая доза облучения составляет 5 мЗв /год.

Определение уровня радиационной безопасности

Определение уровня радиационной безопасности проводится на примере использования дозиметра-радиометра бытового (ИРД-02Б1):

1. Установить переключатель режима работы в положение «мкЗв/ч».

2. Включить прибор, для чего установить переключатель «выкл.- вкл.»

в положение «вкл.». Примерно через 60 с после включения прибор готов

к работе.

3. Поместить прибор в то место, где определяется мощность эквивалентной дозы гамма-излучения. Через 25-30 с на цифровом табло высветится значение, которое соответствует мощности дозы гаммаизлучения в данном месте, выраженной в микрозивертах в час (мкЗв/ч).

4. Для более точной оценки необходимо брать среднее из 3-5 последовательных показаний.

Показание на цифровом табло прибора 0,14 означает, что мощность дозы составляет 0,14 мкЗв/ч или 14 мкР/ч (1 Зв = 100 Р).

Через 25-30 с после начала работы прибора необходимо снять три последовательных показания и найти среднее значение. Результаты оформить в виде табл. 2.

Таблица 2. Определение уровня радиации

Показания прибора

Среднее значение

мощности дозы

Оформление результатов микроклиматических наблюдений

Данные всех микроклиматических наблюдений фиксируются в тетради, а затем обрабатываются и оформляются в виде табл. 3.

Таблица 3. Результаты обработки микроклиматических

наблюдений

Температу-

ра воздуха

Температу-

Влажность

на высоте,

ра воздуха,

воздуха на

высоте, %

2 вариант 1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м: а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.;

г) 680 мм рт. ст. 2. Средние месячные температуры высчитываются: а) по сумме среднесуточных температур; б) делением суммы средних суточных температур на число суток в месяце; в) от разницы сумы температур предыдущего и последующего месяцев. 3. Установите соответствие: давление показатели а) 760 мм рт. ст.; 1) ниже нормы; б) 732 мм рт. ст.; 2) нормальное; в) 832 мм рт. ст. 3) выше нормы. 4. Причиной неравномерного распределения солнечного света по земной поверхности является: а) удаленность от Солнца; б) шарообразность Земли; в) мощный слой атмосферы. 5. Суточная амплитуда – это: а) общее количество показателей температуры в течение суток; б) разница между наибольшими и наименьшими показателями температуры воздуха в течение суток; в) ход температур в течение суток. 6. С помощью какого прибора измеряется атмосферное давление: а) гигрометра; б) барометра; в) линейки; г) термометра. 7. Солнце бывает в зените на экваторе: а) 22 декабря; б) 23 сентября; в) 23 октября; г) 1 сентября. 8. Слой атмосферы, где происходят все погодные явления: а) стратосфера; б) тропосфера; в) озоновый; г) мезосфера. 9. Слой атмосферы, не пропускающий ультрафиолетовые лучи: а) тропосфера; б) озоновый; в) стратосфера; г) мезосфера. 10. В какое время летом при ясной погоде наблюдается наименьшая температура воздуха: а) в полночь; б) перед восходом Солнца; в) после захода Солнца. 11. Высчитайте АД горы Эльбрус. (Высоту вершин найдите на карте, АД у подножия горы возьмите условно за 760 мм рт. ст.) 12. На высоте 3 км температура воздуха = - 15 ‘C, чему равна температура воздуха у поверхности Земли: а) + 5’C; б) +3’C; в) 0’C; г) -4’C.

1 вариант Установите соответствие: давление показатели а) 749 мм рт.ст.;

1) ниже нормы;

б) 760 мм рт.ст.; 2) нормальное;

в) 860 мм рт.ст.; 3) выше нормы.

Разность между наибольшим и наименьшим значениями температуры воздуха

называется:

а) давлением; б) движением воздуха; в) амплитудой; г) конденсацией.

3. Причиной неравномерного распределения солнечного тепла на поверхности Земли

является:

а) удаленность от солнца; б) шарообразность;

в) разная мощность слоя атмосферы;

4. Атмосферное давление зависит от:

а) силы ветра; б) направления ветра; в) разницы температуры воздуха;

г) особенностей рельефа.

Солнце бывает в зените на экваторе:

Озоновый слой расположен в:

а) тропосфере; б) стратосфере; в) мезосфере; г) экзосфере; д) термосфере.

Заполните пропуск: воздушной оболочкой земли является - _________________

8. Где наблюдается наименьшая мощность тропосферы:

а) на полюсах; б) в умеренных широтах; в) на экваторе.

Расположите этапы нагрева в правильной последовательности:

а) нагрев воздуха; б) солнечные лучи; в) нагрев земной поверхности.

В какое время летом, при ясной погоде, наблюдается наибольшая температура

воздуха: а) в полдень; б) до полудня; в) после полудня.

10. Заполните пропуск: при подъёме в горы атмосферное давление…, на каждые

10,5 м на ….мм рт.ст.

Высчитайте атмосферное давление г. Народная. (Высоту вершин найдите на

карте, АД у подножия гор возьмите условно за 760 мм рт.ст.)

В течение суток были зафиксированы следующие данные:

max t=+2’C, min t=-8’C; Определите амплитуду и среднесуточную температуру.

2 вариант

1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м:

а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.; г) 680 мм рт. ст.

2. Средние месячные температуры высчитываются:

а) по сумме среднесуточных температур;

б) делением суммы средних суточных температур на число суток в месяце;

в) от разницы сумы температур предыдущего и последующего месяцев.

3. Установите соответствие:

давление показатели

а) 760 мм рт. ст.; 1) ниже нормы;

б) 732 мм рт. ст.; 2) нормальное;

в) 832 мм рт. ст. 3) выше нормы.

4. Причиной неравномерного распределения солнечного света по земной поверхности

является: а) удаленность от Солнца; б) шарообразность Земли;

в) мощный слой атмосферы.

5. Суточная амплитуда – это:

а) общее количество показателей температуры в течение суток;

б) разница между наибольшими и наименьшими показателями температуры воздуха в

течение суток;

в) ход температур в течение суток.

6. С помощью какого прибора измеряется атмосферное давление:

а) гигрометра; б) барометра; в) линейки; г) термометра.

7. Солнце бывает в зените на экваторе:

2) что можно изобразить на плане местности?
а пришкольный участок
б океан
в Крымский полуостров
г материк
3) какие из перечисленных объектов обозначаются на плане местности линейными знаками?
а реки,озёра
б границы, пути сообщения
в населённые пункты, вершины гор
г полезные ископаемые, леса
4) в каких пределах измеряется географическая широта?
а 0-180"
б 0-90"
в 0-360"
г 90-180"

Благодаря экранирующему эффекту она препятствует как охлаждению поверхности Земли за счёт собственного теплового излучения, так и её нагреву излучением Солнца, тем самым уменьшая сезонные и суточные колебания температуры воздуха.

Характеристики облачности

Количество облаков

Количество облаков - степень покрытия неба облаками (в определённый момент или в среднем за некоторый промежуток времени), выраженная в 10-балльной шкале или в процентах покрытия. Современная 10-балльная шкала облачности принята на первой Морской Международной Метеорологической Конференции (Брюссель , г.).

При наблюдении на метеорологических станциях определяется общее количество облаков и количество облаков нижнего яруса; эти числа записываются в дневниках погоды через дробную черту, например 10/4 .

В авиационной метеорологии применяется 8-октантная шкала, которая проще при визуальном наблюдении: небо делится на 8 частей (то есть пополам, потом ещё пополам и ещё раз), облачность указывают в октантах (восьмых долях неба). В авиационных метеорологических сводках погоды (METAR , SPECI , TAF) количество облаков и высота нижней границы указывается по слоям (от самого нижнего к более верхним), при этом используются градации количества:

  • FEW - незначительные (рассеянные) - 1-2 октанта (1-3 балла);
  • SCT - разбросанные (отдельные) - 3-4 октанта (4-5 баллов);
  • BKN - значительные (разорванные) - 5-7 октантов (6-9 баллов);
  • OVC - сплошные - 8 октантов (10 баллов);
  • SKC - ясно - 0 баллов (0 октантов);
  • NSC - нет существенной облачности (любой количество облаков с высотой нижней границы 1500 м и выше, при отсутствии кучево-дождевых и мощно-кучевых облаков);
  • CLR - нет облаков ниже 3000 м (сокращение используется в сводках, формируемых автоматическими метеостанциями).

Формы облаков

Указываются наблюдаемые формы облаков (латинскими обозначениями) в соответствии с международной классификацией облаков.

Высота нижней границы облаков (ВНГО)

Определяется ВНГО нижнего яруса в метрах. На ряде метеостанций (особенно авиационных) этот параметр измеряется прибором (погрешность 10-15 %), на остальных - визуально, ориентировочно (при этом погрешность может достигать 50-100 %; визуальная ВНГО - самый ненадёжно определяемый элемент погоды). В зависимости от ВНГО можно разделить облачность на 3 яруса (Нижний, средний и верхний). К нижнему ярусу относится(примерно до высоты 2 км): слоистая(могут выпадать осадки в виде мороси), слоисто-дождевая(обложные осадки), слоисто-кучевая (в авиационной метеорологии также отмечаются разорвано-слоистая и разорвано-дождевая) облачность. Средний ярус (примерно от 2 км до 4-6 км): высоко-слоистая и высоко-кучевая. Верхний ярус: перистая, перисто-кучевая, перисто-слоистая облачность.

Высота верхней границы облаков

Может определяться по данным самолётного и радиолокационного зондирования атмосферы . На метеостанциях обычно не измеряется, но в авиационных прогнозах погоды по маршрутам и районам полётов указывается ожидаемая (прогнозируемая) высота верхней границы облаков.

См. также

Источники

Напишите отзыв о статье "Облачность"

Отрывок, характеризующий Облачность

Наконец вошел в комнату староста Дрон и, низко поклонившись княжне, остановился у притолоки.
Княжна Марья прошлась по комнате и остановилась против него.
– Дронушка, – сказала княжна Марья, видевшая в нем несомненного друга, того самого Дронушку, который из своей ежегодной поездки на ярмарку в Вязьму привозил ей всякий раз и с улыбкой подавал свой особенный пряник. – Дронушка, теперь, после нашего несчастия, – начала она и замолчала, не в силах говорить дальше.
– Все под богом ходим, – со вздохом сказал он. Они помолчали.
– Дронушка, Алпатыч куда то уехал, мне не к кому обратиться. Правду ли мне говорят, что мне и уехать нельзя?
– Отчего же тебе не ехать, ваше сиятельство, ехать можно, – сказал Дрон.
– Мне сказали, что опасно от неприятеля. Голубчик, я ничего не могу, ничего не понимаю, со мной никого нет. Я непременно хочу ехать ночью или завтра рано утром. – Дрон молчал. Он исподлобья взглянул на княжну Марью.
– Лошадей нет, – сказал он, – я и Яков Алпатычу говорил.
– Отчего же нет? – сказала княжна.
– Все от божьего наказания, – сказал Дрон. – Какие лошади были, под войска разобрали, а какие подохли, нынче год какой. Не то лошадей кормить, а как бы самим с голоду не помереть! И так по три дня не емши сидят. Нет ничего, разорили вконец.
Княжна Марья внимательно слушала то, что он говорил ей.
– Мужики разорены? У них хлеба нет? – спросила она.
– Голодной смертью помирают, – сказал Дрон, – не то что подводы…
– Да отчего же ты не сказал, Дронушка? Разве нельзя помочь? Я все сделаю, что могу… – Княжне Марье странно было думать, что теперь, в такую минуту, когда такое горе наполняло ее душу, могли быть люди богатые и бедные и что могли богатые не помочь бедным. Она смутно знала и слышала, что бывает господский хлеб и что его дают мужикам. Она знала тоже, что ни брат, ни отец ее не отказали бы в нужде мужикам; она только боялась ошибиться как нибудь в словах насчет этой раздачи мужикам хлеба, которым она хотела распорядиться. Она была рада тому, что ей представился предлог заботы, такой, для которой ей не совестно забыть свое горе. Она стала расспрашивать Дронушку подробности о нуждах мужиков и о том, что есть господского в Богучарове.
– Ведь у нас есть хлеб господский, братнин? – спросила она.
– Господский хлеб весь цел, – с гордостью сказал Дрон, – наш князь не приказывал продавать.
– Выдай его мужикам, выдай все, что им нужно: я тебе именем брата разрешаю, – сказала княжна Марья.
Дрон ничего не ответил и глубоко вздохнул.
– Ты раздай им этот хлеб, ежели его довольно будет для них. Все раздай. Я тебе приказываю именем брата, и скажи им: что, что наше, то и ихнее. Мы ничего не пожалеем для них. Так ты скажи.
Дрон пристально смотрел на княжну, в то время как она говорила.
– Уволь ты меня, матушка, ради бога, вели от меня ключи принять, – сказал он. – Служил двадцать три года, худого не делал; уволь, ради бога.
Княжна Марья не понимала, чего он хотел от нее и от чего он просил уволить себя. Она отвечала ему, что она никогда не сомневалась в его преданности и что она все готова сделать для него и для мужиков.

Через час после этого Дуняша пришла к княжне с известием, что пришел Дрон и все мужики, по приказанию княжны, собрались у амбара, желая переговорить с госпожою.
– Да я никогда не звала их, – сказала княжна Марья, – я только сказала Дронушке, чтобы раздать им хлеба.
– Только ради бога, княжна матушка, прикажите их прогнать и не ходите к ним. Все обман один, – говорила Дуняша, – а Яков Алпатыч приедут, и поедем… и вы не извольте…

На некоторой высоте над земной поверхностью и состоят из капелек воды или ледяных кристалликов, или из тех и других вместе. Все многообразие облаков может быть сведено к нескольким типам. В основу общепринятой в настоящее время международной классификации облаков положены два признака: внешний вид и высота их нижней границы.

По внешнему виду облака делятся на три класса: отдельные, не связанные друг с другом облачные массы, слои с неоднородной поверхностью и слои в виде однородной пелены. Все эти формы могут встречаться на разных высотах, отличаясь по плотности и размеру внешних элементов (барашков, вспученностей, валов, ряби и др.)

По высоте нижшего основания над земной поверхностью облака делятся на 4 яруса: верхний (Ci Cc Cs – высота более 6 км), средний (Ac As – высота от 2 до 6 км), нижний (Sc St Ns – высота менее 2 км), вертикального развития (Cu Cb – могут относиться к разным ярусам, а у наиболее мощных кучево-дождевых облаков (Cb) основание располагается на нижнем ярусе, а вершина может достигать верхнего).

Облачный покров в значительной степени определяет количество поступающей к поверхности Земли солнечной радиации и является источником осадков, влияя таким образом на формирование погоды и климата.

Количество облаков на территории России распределяется довольно неравномерно. Наиболее пасмурными являются районы, подверженные активной циклонической деятельности, характеризующиеся развитой адвекцией влажных . К ним относятся северо-запад Европейской части России, побережье Камчатки, Сахалина, Курильские и . Среднее годовое количество общей облачности в этих районах составляет 7 баллов. Значительная часть Восточной Сибири характеризуется меньшим среднегодовым количеством облаков – от 5 до 6 баллов. Этот сравнительно малооблачный район Азиатской части России находится в сфере действия азиатского .

Распределение среднего годового количества нижней облачности в общих чертах следует за распределением общей облачности. Наибольшее количество облаков нижнего яруса также приходится на северо-запад Европейской части России. Здесь они являются преобладающими (лишь на 1-2 балла меньше, чем количество общей облачности). Минимальное количество облаков нижнего яруса отмечается , особенно в (не более 2 баллов), что свойственно континентальному характеру климата этих районов.

Годовой ход количества как общей, так и нижней облачности на Европейской части России характеризуется минимальными значениями летом и максимальными поздней осенью и зимой, когда особенно проявляется влияние . Прямо противоположный годовой ход количества общей и нижней облачности наблюдается на Дальнем Востоке, и . Здесь наибольшее количество облаков приходится на июль, когда действует летний муссон, приносящий с океана большое количество водяного пара. Минимум облачности отмечается в январе в период наибольшего развития зимнего муссона, с которым в эти районы поступает сухой выхоложенный континентальный воздух с материка.

Суточный ход общего количества облаков на всей территории России характеризуется следующими особенностями:

1) его амплитуда на большей части территории не превышает 1-2 баллов (за исключением центральных районов Европейской части России, где она увеличивается до 3 баллов);

2) количество облаков днем больше, чем ночью, при этом в январе максимум приходится на утренние часы; в центральные месяцы весны и осени суточный ход сглажен, а максимум может смещаться на разные часы суток; в апреле суточный ход ближе к летнему, а в октябре – к зимнему типу;

3) суточный ход нижней облачности практически повторяет суточный ход общей облачности.

Распределение облаков по формам характеризуется относительным постоянством во времени и в пространстве. Почти на всей территории России среди облаков верхнего яруса преобладают Ci среднего яруса – Ac нижнего – Sc и Ns

В годовом ходе в летний период отмечается преобладание кучевых (Cu) и слоисто-кучевых облаков (Sc), в то время как повторяемость слоистых (St) и слоисто-дождевых (Ns), являющихся фронтальными, невелика, поскольку летом сравнительно редко создаются условия для активной циклонической деятельности. Для зимнего, весеннего и осеннего периодов на большей части территории России характерно возрастание повторяемости высоко-слоистых (As), высоко-кучевых (Ac) и слоисто-кучевых (Sc) облаков, при этом на Европейской части России отмечается некоторое увеличение повторяемости слоистых и слоисто-кучевых облаков (St).

mob_info