Основные метеорологические факторы. Метеорологические факторы

Страница 1

Строительство и эксплуатация морских и речных портов осуществляется в условиях постоянного воздействия ряда внешних факторов, присущих основным природным средам: атмосфере, воде и суше. Соответственно этому внешние факторы подразделяют на 3 основные группы:

1)метеорологические;

2)гидрологические и литодинамические;

3)геологические и геоморфологические.

Метеорологические факторы:

Ветровой режим. Ветровая характеристика района строительства является основным фактором, определяющим местоположение порта по отношению к городу, районирование и зонирование его территории, взаимное расположение причалов различного технологического назначения. Являясь главным волнообразующим фактором режимные характеристики ветра определяют конфигурацию берегового причального фронта, компоновку акватории порта и внешних оградительных сооружений, трассирование водных подходов к порту.

Как метеорологическое явление ветер характеризуется направлением, скоростью, пространственным распределением (разгоном) и продолжительностью действия.

Направление ветра для целей портостроения и судоходства обычно рассматривают по 8-ми основным румбам.

Скорость ветра измеряется на высоте 10 м над поверхностью воды или суши с осреднением за 10 минут и выражается в метрах в секунду или узлах (knots, 1 узел=1 миля/час=0.514 метров/секунду).

В случае невозможности выполнения указанных требований результаты наблюдений над ветром могут быть откорректированы путем введения соответствующий поправок.

Под разгоном понимают расстояние, в пределах которого направление ветра изменялось не более чем на 300 .

Продолжительность действия ветра - период времени, в течение которого направление и скорость ветра находились в пределах определенного интервала.

Основными вероятностными (режимными) характеристиками ветрового потока, используемыми при проектировании морских и речных портов являются:

· повторяемость направлений и градаций скоростей ветра;

· обеспеченность скоростей ветра определенных направлений;

· расчетные скорости ветра, соответствующие заданным периодам повторяемости.

Температура воды и воздуха. При проектировании, строительстве и эксплуатации портов используют сведения о температуре воздуха и воды в пределах их изменения, а также вероятности экстремальных значений. В соответствии с данными о температуре определяются сроки замерзания и вскрытия бассейнов, устанавливается длительность и рабочий период навигации, планируется работа порта и флота. Статистическая обработка многолетних данных о температуре воды и воздуха предусматривает следующие этапы:

Влажность воздуха. Влажность воздуха определяется содержанием в нем водяных паров. Абсолютная влажность - количество водяного пара в воздухе, относительная - отношение абсолютной влажности к ее предельному значению при данной температуре.

Водяной пар поступает в атмосферу в процессе испарения с земной поверхности. В атмосфере водяной пар переносится упорядоченными воздушными течениями и путем турбулентного перемешивания. Под влиянием охлаждения водяной пар в атмосфере конденсируется – образуются облака, а затем и осадки, выпадающие на землю.

С поверхности океанов (361 млн. км2) в течение года испаряется слой воды толщиной 1423 мм (или 5,14х1014 т), с поверхности материков (149 млн. км2) – 423 мм (или 0,63х1014 т). Количество осадков на материках значительно превышает испарение. Это означает, что значительная масса водяного пара поступает на материки с океанов и морей. С другой стороны, не испарившаяся на материках вода поступает в реки и далее моря и океаны.

Сведения о влажности воздуха учитывают планировании перегрузки и хранения некоторых видов грузов (напр. чай, табак).

Туманы. Возникновение тумана обусловлено превращением паров в мельчайшие водяные капельки при увеличении влажности воздуха. Образование капелек происходит в случае наличия в воздухе мельчайших частиц (пыль, частицы соли, продукты сгорания и т.п.).

Проект СТО с конструктивной разработкой установки для мойки автомобиля снизу
Любой автолюбитель старается следить за чистотой и внешним видом своего автомобиля. В городе Владивостоке с влажным климатом и плохими дорогами следить за автомобилем сложно. Поэтому автовладельцам приходится прибегать к помощи специализированных автомоечных станций. Много машин в горо...

Разработка технологического процесса текущего ремонта жидкостного насоса автомобиля ВАЗ-2109
Автомобильный транспорт развивается качественно и количественно бурными темпами. В настоящее время ежегодный прирост мирового парка автомобилей равен 30-32 млн. единиц, а его численность - более 400 млн. единиц. Каждые четыре из пяти автомобилей общего мирового парка -легковые и на их до...

Бульдозер ДЗ-109
Целью данной работы является приобретение и закрепление знаний конструкции специфических узлов, главным образом электрооборудования машин для земляных работ. Сейчас разрабатывают бульдозеры для работ на более твердых грунтах. Разрабатывают бульдозеры с повышенной единичной мощностью м...

ИССЛЕДОВАНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ В ПРОИЗВОДСТВЕННЫХ И УЧЕБНЫХ ПОМЕЩЕНИЯХ

Метеорологические факторы рабочей зоны

Нормальное самочувствие человека на предприятии и в быту в первую очередь зависит от метеорологических условий (микроклимата). Микроклиматом называют совокупность физических факторов производственной среды (температуры, влажности и скорости движения воздуха, атмосферного давления и интенсивность теплового излучения), которые комплексно влияют на тепловое состояние организма.

Атмосферный воздух является смесью 78% азота, 21% кислорода, около 1% аргона, углекислого и других газов в незначительной концентрации, а также воды во всех фазовых состояниях. Снижение содержания кислорода до 13% затрудняет дыхание, может привести к потере сознания и смерти, высокое содержание кислорода может вызвать вредные окислительные реакции в организме.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. В организме постоянно вырабатывается тепло, а его излишки выделяются в окружающий воздух. В состоянии покоя человек за сутки теряет около 7 120 кДж, при совершении легкой работы – 10 470 кДж, при осуществлении работы средней тяжести – 16 760 кДж, при выполнении тяжелых физических работ потери энергии составляют 25 140 – 33 520 кДж. Выделение теплоты происходит в основном через кожу (до 85%) путем конвекции, а также в результате испарения пота с поверхности кожи.

За счет терморегуляции температура тела остается постоянной – 36,65°С, что является важнейшим показателем нормального самочувствия. Изменение температуры окружающего воздуха приводит к изменениям в характере теплообмена. При температуре окружающего воздуха 15 – 25°С организм человека вырабатывает постоянное количество теплоты (зона покоя). При повышении температуры воздуха до 28°С осложняется нормальная умственная деятельность, ослабляется внимание и сопротивление организма различным вредным воздействиям, работоспособность падает на треть. При температуре выше 33°С выделение тепла из организма происходит только за счет испарения пота (I фаза перегрева). Потери могут составлять до 10 литров за рабочую смену. Вместе с потом из организма выводятся витамины, что нарушает витаминный обмен.

Обезвоживание приводит к резкому уменьшению объема плазмы крови, которая теряет вдвое больше воды, чем другие ткани и становится более вязкой. Дополнительно с водой уходят из крови хлориды поваренной соли до 20 – 50 г за смену, плазма крови теряет способность удерживать воду. Возмещают потерю хлоридов в организме за счет приема подсоленной воды из расчета 0,5 – 1,0 г/л. При неблагоприятных условиях теплообмена, когда отдается меньше тепла, чем вырабатывается в процессе труда, у человека может наступить II фаза перегрева организма – тепловой удар.

При снижении температуры окружающего воздуха кровеносные сосуды кожи сужаются, приток крови к поверхности тела замедляется, снижается отдача тепла. Сильное охлаждение приводит к обморожению кожи. Снижение температуры тела до 35°С вызывает болезненные ощущения, при снижении ее ниже 34°С наступает потеря сознания и смерть.

Санитарными нормами и правилами (СН) установлены оптимальные микроклиматические условия производственной среды: 19 – 21°С для кабинетов компьютерной техники; 17 – 20°С для учебных классов, кабинетов, аудиторий и спортивного зала; 16 – 18°С для учебных мастерских, вестибюля, гардероба и библиотеки. Относительная влажность воздуха принята за норму 40 – 60%, в теплое время до 75%, в классах компьютерной техники 55 – 62%. Скорость движения воздуха должна находиться в пределах 0,1 – 0,5 м/с, а в теплое время года 0,5 – 1,5 м/с и 0,1 – 0,2 м/с для помещений с вычислительной техникой.

Жизнедеятельность человека может проходить в широком диапазоне давлений 73,4 – 126,7 кПа (550 – 950 мм. рт. ст.), однако наиболее комфортное самочувствие имеет место при нормальных условиях (101,3 кПа, 760 мм. рт. ст.). Изменение давления в несколько сотен Па от нормальной величины вызывает болезненные ощущения. Также для здоровья человека опасна быстрая смена давления.

Мно­голетние и годовые закономерности распределения атмосферных осад­ков, температуры воздуха, влажно­сти. Климатические (метеорологические) факторы во многом определяют особенности режима подземных вод. Заметное воздействие на грунтовые воды оказывают температура воздуха, атмосферные осадки, испарение, а также дефицит влажности воздуха и атмосферное давление. В своей совокупности воздействия они определяют размеры и сроки питания подземных вод и придают их режиму характерные черты.

Под климатом в метеорологии понимают закономерную смену атмосферных процессов, возникающих в результате сложного воздействия солнечной радиации на земную поверхность и атмосферу . Основными показателями климата можно считать:

Радиационный баланс Земли;

Процессы циркуляции атмосферы;

Характер подстилающей поверхности.

Космогенные факторы. Изменение климата во многом зависит от величины солнечной радиации , она определяет не только тепловой баланс Земли но и распределение других метеорологических элементов. Годовые суммы тепла радиации, приходящиеся на территорию Средней Азии и Казахстан составляют от 9000 до 12000 тыс. калл.

М.С.Эйгенсон (1957), Н.С. Токарев (1950), В.А. Коробейников (1959) отмечают закономерную связь колебаний уровня грунтовых вод с изменениями солнечной энергии. При этом установлены 4, 7, 11-летние циклы. М.С.Эйгенсон отмечает в среднем 1 раз в 11 лет число пятен (и факелов) достигает своего наибольшего количества. После этой эпохи максимума оно относительно медленно уменьшается с тем, чтобы достигнуть примерно через 7 лет своего наименьшего значения. После достижения эпохи 11-летнего цикличного минимума число пятен вновь закономерно возрастает, а именно в среднем через 4 года после минимума вновь наблюдается очередной максимум 11-летнего цикла и т.д.

Массовый корреляционный анализ режима подземных вод с различными индексами солнечной активности показал в целом низкие корреляционные связи. Лишь изредка коэффициент этой связи достигает 0,69. Сравнительно лучшие связи устанавливаются с индексом геомагнитной возмущенности Солнца.

Многими исследователями установлены многолетние закономерности атмосферной циркуляции . Ими выделяются две основные формы переноса тепла и влаги: зональная и меридиональная. При этом меридиональный перенос определяется наличием градиента температур воздуха между экватором и полюсом, а зональный – градиентом температур между океаном и материком. В частности, отмечается, что количество атмосферных осадков возрастает для Европейской части СНГ, Казахстана и Средней Азии при западном типе циркуляции, обеспечивающем приток влаги с Атлантики, и убывает по сравнению с нормой при восточном типе циркуляции.

Палеогеографические данные показывают, что на протяжении жизни Земли климатические условия подвергались неоднократным и значительным изменениям. Изменения климата происходят в результате многих причин: смещения оси вращения и перемещения полюсов Земли, изменения солнечной активности в прошлое геологическое время, прозрачности атмосферы и др. Одной из серьезных причин его изменения являются также крупные тектонические и экзогенные процессы, изменяющие облик (рельеф) земной поверхности.

Температура воздуха. На территории СНГ можно выделить три температурные провинции.

Первая – провинция с отрицательной среднегодовой температурой. Она занимает значительную часть азиатской территории. Здесь наблюдается широкое развитие многолетнемерзлых пород (вода находится в твердом состоянии и только в теплый летний период образует временные потоки).

Вторая провинция характеризуется положительной среднегодовой температурой воздуха и наличием сезонно мерзлоты почвы в зимний период (Европейская часть, юг Западной Сибири, Приморье, Казахстан и часть территории Средней Азии). В период промерзания почв прекращается питание грунтовых вод за счет атмосферных осадков, в то время как сток их еще происходит.

Третья провинция имеет положительную температуру воздуха в самый холодный период года. Она охватывает юг Европейской части СНГ, Черноморское побережье, Закавказье, юг Туркменской и часть Узбекской республики, а также Таджикистан (питание происходит в течение всего года).

Кратковременные повышения температуры в зимний период, создающие оттепели, вызывают резкие повышения уровня и увеличение дебита подземных вод.

Изменение температуры воздуха воздействует на грунтовые воды не непосредственно, а через породы зоны аэрации и воды этой зоны.

Механизм воздействия температуры воздуха на режим грунтовых вод весьма разнообразен и сложен. Наблюдениями установлены закономерные ритмичные колебания температуры, амплитуда которых постепенно уменьшается. Максимальная температура подземных вод с глубиной постепенно убывает до зоны постоянных температур. Минимальная температура наоборот с глубиной возрастает. Глубина залегания пояса постоянных температур зависит от литологического состава пород (зоны аэрации) и глубины залегания подземных вод.

Атмосферные осадки – являются одним из главнейших режимообразующих факторов. Известно, что атмосферные осадки расходуются на поверхностный и склоновый стоки, испарение и инфильтрацию (питают подземные воды).

Величина поверхностного стока зависит от климатических и других условий и колеблется от нескольких процентов до половины годовой суммы атмосферных осадков (в некоторых случаях и выше).

Наиболее трудно определяется величина испарения , которая также зависит от большого числа различных факторов (дефицит влажности воздуха, характер растительности, сила ветра, литологический состав, состояние и цвет почвы, и многие др.).

Из той части атмосферных осадков, которые проникают в зону аэрации, часть не достигает поверхности грунтовых вод, а расходуется на физическое испарение и транспирацию растениями.

Лизиметрическими исследованиями (Гордеев, 1959) были получены данные по лизиметрам, заложенным на разную глубину:

А.В.Лебедев (1954, 1959) расчетным путем установил зависимость величины питания грунтовых вод или инфильтрации и испарения от мощности зоны аэрации. Данные инфильтрации характеризуют период максимального питания (весна), а данные испарения – минимального (лето).

Просачивание воды в зоне аэрации зависит от интенсивности дождя, недостатка насыщения и полной водоотдачи, коэффициента фильтрации и достигает наибольшей глубины при более длительном дождевании. Прекращение дождя замедляет процесс продвижения воды, в таких случаях возможно образование «верховодки».

Таким образом, наилучшие условия при питании грунтовых вод существуют на небольших глубинах в основном в весеннее время при снеготаянии и осенью в период продолжительного выпадения осадков.

Воздействие атмосферных осадков на грунтовые воды вызывает изменение запасов, химического состава и температуры.

Несколько слов о снежном покрове, который около 10 см на юге, 80-100 см на севере и 100-120 см на Крайнем Севере, Камчатке. Наличие запасов воды в снеге еще не указывает на величину питания грунтовых вод. Существенную роль здесь играет мощность сезонно промерзающего слоя и продолжительность его оттаивания, величина испарения и расчлененность рельефа.

Испарение. Величина испарения зависит от очень большого числа факторов (влажность воздуха, ветра, температуры воздуха, радиации, неровности и цвета поверхности земли, а также наличия растительности и др.).

В зоне аэрации происходит испарение как воды, поступающей с поверхности в результате инфильтрации, так и воды с капиллярной каймы. В результате испарения удаляется вода, еще не достигшая грунтовых вод, и величина их питания уменьшается.

Влияние испарения на химический состав воды является сложным процессом. Состав воды в результате испарения (в аридной зоне) не изменяется, т. к. вода оставляет соли при испарении на уровне капиллярной каймы. При последующей инфильтрации подземные воды обогащаются наиболее легко растворимыми солями, возрастает их общая минерализация и содержания отдельных компонентов.

Чем больше мощность зоны аэрации, тем меньше испарение (с глубиной). На глубине более 4-5 м в пористых или слаботрещиноватых породах испарение становится весьма малым. Ниже этой глубины (до 40 м и более) процесс испарения практически постоянен (0,45 -0,5 мм в год). С глубиной амплитуда колебания уровня подземных вод затухает, что можно объяснить рассредоточением процесса питания во времени и балансированием его подземным стоком.

В Подмосковье при песчаном составе зоны аэрации и глубинах залегания подземных вод в среднем 2-3 м летние осадки достигают грунтовые воды лишь при величине дождевых осадков выше 40 мм или при продолжительных моросящих дождях.

Атмосферное давление. Увеличение атмосферного давления приводит к снижению уровней воды в скважинах и дебитов источников, а уменьшение, наоборот, к их уменьшению.

Отношение изменений уровня подземных вод Δh, вызванных соответствующим изменением атмосферного давления Δр называется барометрической эффективностью (Jacob,1940).

Параметр В, равный

Где γ – плотность воды (равная 1 г/см 3 для пресных вод),

характеризует упругие и фильтрационные свойства горизонта, а также степень его изоляции от атмосферы (В=0,3-0,8).

Изменение атмосферного давления может вызывать изменение уровня грунтовых вод до 20-30 см. Кроме того, порывы ветра, создавая разряжение атмосферного давления, могут приводить к подъему уровня до 5 см.

Рассмотренные выше режимообразующие климатические факторы не исчерпывают перечня многочисленных природных процессов, воздействующих на режим подземных вод.

Осн.: 3

Доп.: 6

Контрольные вопросы:

Что такое климат?

2. Каковы три основных показателя климата?

3. Перечислите метеорологические (климатические) режимообразующие факторы.

4. Каково влияние на режим подземных вод космогенных факторов?

5. Каковы многолетние закономерности атмосферной циркуляции, основные формы переноса тепла и влаги?

6. Дайте характеристику температурных провинций на территории СНГ.

7. От чего зависит глубина залегания пояса постоянных температур подземных вод?

8. Воздействие атмосферных осадков на грунтовые воды.

9. Влияние испарения на химический состав воды.

10. От чего зависит величина питания грунтовых вод или инфильтрация и испарение?

11. Как изменяется уровень воды в скважинах и дебит источников в зависимости от атмосферного давления?

12. Какой параметр называется барометрической эффективностью и какие свойства горизонта подземных вод он характеризует?

13. Может ли изменение атмосферного давления вызывать изменение уровня грунтовых вод?


Похожая информация.


Кто захочет исследовать медицинское искусство правильным образом, должен … прежде всего

принять в рассмотрение времена года.

Некоторые факты
? В экономически развитых странах до 38% здоровых мужчин и 52% здоровых женщин имеют повышенную чувствительность к метеорологическим факторам.
? Число аварий возрастает не в дождь и туман, но в жару и холод.
? При термической перегрузке число дорожно-транспортных происшествий увеличивается на 20%.
? При изменении погоды смертность в дорожно-транспортных происшествиях возрастает более, чем на 10%.
? Во Франции, Швейцарии и Австрии от загрязненного воздуха ежегодно умирают 40, и в США – 70 тысяч человек.
? На старом континенте каждый год жертвами загрязнения атмосферы становятся не менее 100 тысяч человек.

Биологические ритмы
? В физиологических условиях действуют физиологические ритмы.
? Патологические условия – дело более серьезное.
? С одной стороны – это нарушения в физиологических биоритмах, либо, даже более часто, подстройка физиологических биоритмов под патологический процесс, чтобы обеспечить как можно лучшее ее разрешение (принцип оптимальности болезни).
? С другой – это появление дополнительных ритмов, обусловленных патологическими состояниями.
? Простейший пример– хроническое циклическое заболевание с циклами «обострение-ремиссия».

Вся «соль» в переходных процессах
? Биологические ритмы при всей исключительной устойчивости не есть застывшие конструкции.
? Будучи четко «завязанными» на внешние синхронизаторы, они имеют спектр устойчивых состояний и при изменении частотных характеристик синхронизаторов «дрейфуют» между последними, или, другими словами, переходят от одного устойчивого состояния к другому. Переход этот осуществляется через так и называемые переходные процессы.
? Для циркадианного ритма продолжительность переходного процесса может составлять от 5 до 40 суток.
? Именно во время переходных процессов наиболее высока вероятность нарушений в биологических ритмах, получивших собирательное название десинхронозов. Десинхронозы значительно более часто, чем мы себе представляем, – один из клинических синдромов большинства заболеваний. Выводы следуют сами собой.


по влиянию на здоровье
? индифферентный, с незначительными изменениями атмосферы, когда человек не ощущает их влияния на свой организм,
? тонизирующий, с изменениями атмосферы, благоприятно влияющими на организм человека, в том числе с хроническими заболеваниями, такими, как сердечнососудистые, легочные и др.,
? спастический, с резким изменением погоды в сторону похолодания, повышением атмосферного давления и содержания кислорода в воздухе, проявляющийся у чувствительных лиц повышением артериального давления, головными и сердечными болями,
? гипотензивный, с тенденцией снижения содержания кислорода в воздухе, проявляющийся у чувствительных лиц снижением тонуса сосудов (самочувствие лиц с артериальной гипертензией улучшается и гипотензией – ухудшается),
? гипоксический, с изменением погоды в сторону потепления и снижения содержания кислорода в воздухе, с развитием у чувствительных лиц признаков кислородной недостаточности.

Сенсоры погоды
? Кожа – температура, влажность, ветер, солнечные лучи, атмосферное электричество, радиоактивность
? Легкие – температура, чистота и ионизация воздуха, влажность, ветер
? Органы зрения, слуха, тактильной, вкусовой, чувствительности – свет, шум, запах, температура и химический состав воздуха


? На изменения погоды реагирует каждый, и на любое изменение погоды тоже; реакция состоит в адаптации, которая у здорового физиологическая и полная, без ухудшения самочувствия
? Каждый человек – метеочувствительный: здоровые физически и психически с хорошим генотипом чувствуют себя комфортно при любой погоде, и адаптация происходит без клинических проявлений; только с нарушениями здоровья развиваются метеопатические реакции, усиливающиеся с нарастанием их тяжести; наиболее подвержены метеопатическим реакциям лица старшего возраста с хроническими заболеваниями
? При тяжелых погодных катаклизмах (сильная, жесткая геомагнитная буря, геомагнитный шторм, резкое понижение и повышение температуры с высокой влажностью, др.) возрастает риск развития жизнеопасных состояний (инсульт, инфаркт миокарда, др.) сердечной и иной смерти у лиц с ослабленным здоровьем
? Влияние изменений погоды на здоровье одинаково в помещении и на улице, и отсидкой дома не уберечься


? Самый первый фактор – генетически обусловленные конституциональные особенности организма человека.
? От генетической наследственности не спрятаться.
? И тем не менее профилактические меры общего порядка позволяют снизить их накал, благополучно лавируя между прихотями погоды.
?
Метеопатии «слабого» пола
? Метеопатии, в первую очередь, удел «слабого» пола.
? Лица женского пола активнее реагируют на изменения погоды, острее чувствуют приближение и завершение ненастья.
? Причину многие видят в особенностях гормонального статуса, но она в особенностях женского организма вообще.

Метеопатии и возраст
? Метеопаты – дети, пока не завершится формирование регуляторных систем и адаптационных механизмов, а также лица старшего возраста.
? Минимальная метеочувствительность (максимальная метеорезистентность) в возрасте (14-20) лет, и далее с возрастом только усиливается. К пятидесяти годам половина людей уже метеопаты – с возрастом адаптационные ресурсы организма снижаются, а многие еще накапливают и болезни.
? По мере старения человека частота и интенсивность метеопатий реакций еще более усиливаются, что связано с инволюцией организма и дальнейшим снижением ресурсов адаптации, развитием и прогрессированием хронических заболеваний, прежде всего, болезней старения (атеросклероз, артериальная гипертензия, мозговая сосудистая недостаточность, ишемическая болезнь сердца, хроническая ишемическая болезнь нижних конечностей, сахарный диабет типа 2, др.).

Урбанические факторы
? Жители города значительно чаще селян страдают метеопатией. Причина в более тяжелых экологических условиях, в том числе в перенасыщении городского воздуха тяжелыми ионами, сокращении светового дня, снижении интенсивности ультрафиолетового излучения, более мощном воздействии техногенных, социальных и психологических факторов, приводящих к развитию хронического дистресса.
? Другими словами, чем дальше человек от природы, тем сильнее у него метеопатические реакции.

Способствующие метеопатиям факторы
? Избыточная масса тела, эндокринные сдвиги в период полового созревания, беременности и климакса.
? Перенесенные травмы, острые респираторные вирусные и бактериальные инфекции, другие заболевания.
? Условия ухудшающейся социально-экономической и экологической обстановки.

Критерии метеопатий
? Замедление приспособления к изменениям погоды или пребыванию других климатических условиях
? Ухудшение самочувствия при изменении погоды или пребывании в других климатических условиях
? Стереотипные реакции самочувствия на однотипные изменения погоды
? Сезонное ухудшение самочувствия или обострение имеющихся заболеваний
? Доминирование среди возможных изменений самочувствия погодных или климатических факторов

Фазы развития метеопатий
? появление с изменением погоды сигнальных раздражителей в виде электромагнитных импульсов, инфразвуковых сигналов, изменения содержания кислорода в воздухе, др.
? атмосферно-физический погодный комплекс при прохождении атмосферного фронта с установлением неблагоприятной погоды
? вызванные сменой погоды последовые метеотропные реакции с изменениями в состоянии организма


? предчувствие смены погоды,
? ухудшение самочувствия,
? снижение активности,
? депрессивные расстройства,
? неприятные ощущения (в том числе болезненные) в разных органах и системах,
? отсутствие других причин ухудшения состояния или обострения болезни,
? повторяемость признаков при перемене климата или погоды,
? быстрое обратное развитие признаков при улучшении погоды,
? непродолжительное по времени проявление признаков
? отсутствие признаков при благоприятной погоде.

Три степени метеопатий
? легкая (степень 1) – незначительное субъективное недомогание при резких изменениях погоды
? средней степени (степень 2) – на фоне субъективного недомогания изменения со стороны вегетативной нервной и сердечнососудистой систем, обострение имеющихся хронических заболеваний
? тяжелой степени (степень 3) – резко выраженные субъективные нарушения (общая слабость, головные боли, головокружения, шум и звон в голове и/или повышенная возбудимость, раздражительность, бессонница и/или изменения артериального давления, боль и ломота в суставах, мышцах, др.) с обострением имеющихся заболеваний.

Метеопатии в МКБ-10
? В МКБ 10 нет специального раздела, посвященного метеопатиям. И, тем не менее, место им в ней отведено, так как метеопатии своей природой имеют особую (дезадаптивную), но реакцию организма человека на стресс.
? F43.0 – острая реакция на стресс
? F43.2 – расстройства приспособительных реакций

Наиболее частые метеопатические симптомокомплексы
? Церебральный – раздражительность, общее возбуждение, диссомнии, головные боли, расстройства дыхания
? Вегетативное соматоформное растройство – колебания артериального давления, вегетативные нарушения, др.
? Ревматоидный – общая утомляемость, усталость, боли, воспалительные явления со стороны опорно-двигательного аппарата
? Кардиореспираторный – кашель, увеличение частоты сердечных сокращений и частоты дыхания
? Диспепсический – неприятные ощущения в области желудка, правом подреберье, по ходу кишечника; тошнота, нарушения аппетита, стул
? Иммунный – снижение иммунитета, простудные заболевания, грибковая инфекция
? Кожно-аллергический – кожный зуд, кожные высыпания, эритема, другие кожно-аллергические изменения
? Геморрагический – кровоточивые высыпания на коже, кровотечения из слизистых, приливы крови к голове, повышенное кровенаполнение конъюнктив, носовые кровотечения, изменением клинических показателей крови.

Частота ведущих метеопатий по мере убывания
? астения – 90%
? головная боль, мигрень, респираторные нарушения – 60 %
? вялость, апатия -50%
? быстрая утомляемость – 40%
? раздражительность, депрессия– 30%
? понижение внимания, головокружение, боли в костях и суставах- 25%
? желудочно-кишечные расстройства – 20%.

Соматические заболевания и состояния с высоким риском метеопатий
? Аллергия сезонная
? Аритмии сердца
? Артериальная гипертензия
? Артрит (любого сустава)
? Беременность
? Болезнь Бехтерева
? Бронхиальная астма
? Заболевания придатков
? Дерматомиозит
? Желчекаменная болезнь
? Заболевания щитовидной железы
? Ишемическая болезнь сердца
? Климакс
? Мигрень
? Мигрень
Сердечнососудистые заболевания
? Данная категория лиц дает самую высокую обращаемость за скорой медицинской помощью – 50% обращений за сутки в дни резких изменений погоды по сравнению с индифферентными днями.
? Характерна прямая связь (95% совпадений) между формированием неблагоприятных типов погоды и развитием метеотропных реакций.
? Чаще всего головные боли, головокружение, шум в ушах, боли в области сердца, нарушение сна. Нередко внезапное повышение артериального давления. Возможны изменения системы свертывания крови, морфологии кровяных клеток, другие биохимические сдвиги, нарушения функции сердечной мышцы.
? Характерны появление или усиление стенокардических болей, кардиалгий, различных нарушений сердечного ритма, неустойчивость артериального давления. Высокий рист ишемических атак и инфарктов на разных уровнях.

Бронхолегочные заболевания
? Метеопаты с бронхолегочными заболеваниями составляют до 60% среди взрослых и 70% – среди детей.
? Почти четверть обострений бронхолегочных заболеваний вызвана воздействием погодных факторов, прежде всего, колебаниями атмосферного давления и относительной влажности воздуха, и усиливается при резком похолодании, сильном ветре, высокой влажности, грозовых явлениях.
? Частота метеотропных реакций в дни прохождения холодных фронтов увеличивается более, чем на треть.
? Метеопатические реакции проявляются общим недомоганием, слабостью, появлением или усилением кашля, субфебрильной температуры, развитием одышки, удушья, снижением жизненной емкости легких, других показателей функции внешнего дыхания.
? Почти в половине случаев погодные факторы являются причиной обострения бронхиальной астмы.

Нервные и психические заболевания
? У трети лиц с нервными и психическими заболеваниями обострения четко «привязаны» к погодным факторам. На изменения погоды чаще реагируют также лица с ослаблением основных процессов высшей нервной деятельности, разного рода соматоформными вегетативными расстройствами еще до развития соматической патологии.
? Характерна сезонная зависимость частоты обострений: повышение осенью – весной и снижение – летом.
? Влияние погодных факторов более выражено у лиц с маниакально-депрессивными психозами, чем с шизофренией. Максимум обострений в депрессивной фазе приходится на май-август, и маниакальной – ноябрь- февраль.
? При дегенеративных заболеваниях позвоночника (остеохондрозе, радикулите, др.) и крупных суставов резкое похолодание, равно как и ветреная погода, часто является причиной развития и/или усиления болевого синдрома и его эквивалентов. Нередкими являются общая слабость, головокружение, ощущение разбитости, снижение работоспособности, повышенная раздражительность и утомляемость, чувство онемения и слабость пальцев кистей и стоп, боли и утренняя скованность в других суставах, влекущие к снижению работоспособности.

Заболевания органов пищеварения
? Повышенная метеозависимость характерна для хронических заболеваний органов пищеварения: гастрит, гастродуоденит, язвенная болезни желудка и двенадцатиперстной кишки, панкреатит, разные формы холецистита, др.
? С резкими изменениями погоды связаны возникновение или усиление болей в соответствующих частях области живота, развитие диспепсий с такими признаками, как изжога, тошнота, отрыжка и даже рвота на фоне ухудшения общего самочувствия и снижения работоспособности.
? При тяжелых хронических заболеваниях возможны более тяжелые нарушения, как, например, обострение язвенного процесса с высоким риском кишечного кровотечения, др.
? Не менее, чем у 1/5 находящихся на лечении в стационаре резко изменяющиеся погодные факторы являются причиной развития обострений и более тяжелого протекания заболеваний с ухудшением клинического состояния.

Заболевания органов мочевыделительной системы
? Как и большинство иных соматических заболеваний, заболевания мочевыделительной системы в своем большинстве имеют воспалительную природу, либо связаны с воспалительными процессами, и потому характеризуются четкой метеопатической «привязанностью» с обострениями в переходные осенне-зимний и зимне-весенний периоды.
? Примеры: гломеруло- и пиелонефрит, метеопатические реакции со стороны которых проявляются головной болью, слабостью, повышением артериального давления, отеками, признаками интоксикации, развитием или усилением расстройств мочеиспускания.

Геморрагические заболевания


Ветровой режим . Ветровая характеристика района строительства является основным фактором, определяющим местоположение порта по отношению к городу, районирование и зонирование его территории, взаимное расположение причалов различного технологического назначения. Являясь главным волнообразующим фактором режимные характеристики ветра определяют конфигурацию берегового причального фронта, компоновку акватории порта и внешних оградительных сооружений, трассирование водных подходов к порту.

Как метеорологическое явление ветер характеризуется направлением, скоростью, пространственным распределением (разгоном) и продолжительностью действия.

Направление ветра для целей портостроения и судоходства обычно рассматривают по 8-ми основным румбам.

Скорость ветра измеряется на высоте 10 м над поверхностью воды или суши с осреднением за 10 минут и выражается в метрах в секунду или узлах (knots, 1 узел=1 миля/час=0.514 метров/секунду).

В случае невозможности выполнения указанных требований результаты наблюдений над ветром могут быть откорректированы путем введения соответствующий поправок.

Под разгоном понимают расстояние, в пределах которого направление ветра изменялось не более чем на 30 0 .

Продолжительность действия ветра - период времени, в течение которого направление и скорость ветра находились в пределах определенного интервала.

Основными вероятностными (режимными) характеристиками ветрового потока, используемыми при проектировании морских и речных портов являются:

  • повторяемость направлений и градаций скоростей ветра;
  • обеспеченность скоростей ветра определенных направлений;
  • расчетные скорости ветра, соответствующие заданным периодам повторяемости.

Повторяемость направлений и градаций скоростей ветра рассчитывают по формуле на основе данных наблюдений за длительный (не менее 25 лет) период. При этом исходные данные группируют по 8-ми направлениям и градациям скоростей ветра (обычно через 5 м/с). К одному типу все наблюдения над ветром, при которых направление совпадает с каким-либо из основных румбов или отличается от него не более чем на 22.5 0 . Результаты расчетов сводят в таблицы повторяемости направлений и градаций скоростей ветра (табл.5.2.1), дополненные данными о максимальных скоростях ветра и повторяемостях штилевых ситуаций. Полученные данные являются основой для построения полярной диаграммы - розы повторяемости направлений и градаций скоростей ветра (рис.5.2.1).

Построение розы повторяемости направлений и градаций скоростей ветра выполняют следующим образом. По каждому направлению от центра откладывают векторы повторяемости наименьшей из градаций скоростей ветра. Концы векторов данной градации соединяют линиями, а затем откладывают векторы следующей градации скорости ветра, также соединяя их концы линиями и т.д. В случае отсутствия значения повторяемости в какой-либо из градаций, концы векторов соседних направлений соединяют с последним значением повторяемости данного направления.

Повторяемость, P(V), % , направлений и градаций скоростей ветра

Напр. V, м./с С СВ В ЮВ Ю ЮЗ З СЗ Штиль Сумма
>20 - - 0.04 0.10 - - - 0.01 - 0.15
14-19 0.21 0.04 1.25 2.23 0.15 0.03 0.01 0.49 - 4.41
9-13 1.81 0.52 6.65 6.84 0.55 0.07 0.26 2.21 - 18.91
4-8 5.86 4.56 12.88 3.32 3.13 3.24 1.50 5.56 - 46.05
1-3 3.89 2.32 3.21 3.31 1.92 2.25 1.55 2.27 - 20.72
Штиль - - - - - - - - 9.76 9.76
Сумма 11.77 7.44 24.03 21.80 5.75 5.59 3.32 10.54 9.76 100.00
Макс. - -

Рис.5.2.1. Роза повторяемости направлений и градаций скоростей ветра (а) и максимальных скоростей (б)

По всей совокупности данных наблюдений над ветром также можно определить количество и среднюю непрерывную продолжительность ситуаций, в течение которых скорость ветра была равна или превышала некоторое фиксированное значение (напр. > 5; >10; > 15 м/с и т.д.).

Температура воды и воздуха . При проектировании, строительстве и эксплуатации портов используют сведения о температуре воздуха и воды в пределах их изменения, а также вероятности экстремальных значений. В соответствии с данными о температуре определяются сроки замерзания и вскрытия бассейнов, устанавливается длительность и рабочий период навигации, планируется работа порта и флота. Статистическая обработка многолетних данных о температуре воды и воздуха предусматривает следующие этапы:

Влажность воздуха . Влажность воздуха определяется содержанием в нем водяных паров. Абсолютная влажность - количество водяного пара в воздухе, относительная - отношение абсолютной влажности к ее предельному значению при данной температуре.

Водяной пар поступает в атмосферу в процессе испарения с земной поверхности. В атмосфере водяной пар переносится упорядоченными воздушными течениями и путем турбулентного перемешивания. Под влиянием охлаждения водяной пар в атмосфере конденсируется – образуются облака, а затем и осадки, выпадающие на землю.

С поверхности океанов (361 млн. км 2) в течение года испаряется слой воды толщиной 1423 мм (или 5,14х10 14 т), с поверхности материков (149 млн. км 2) – 423 мм (или 0,63х10 14 т). Количество осадков на материках значительно превышает испарение. Это означает, что значительная масса водяного пара поступает на материки с океанов и морей. С другой стороны, не испарившаяся на материках вода поступает в реки и далее моря и океаны.

Сведения о влажности воздуха учитывают планировании перегрузки и хранения некоторых видов грузов (напр. чай, табак).

Туманы . Возникновение тумана обусловлено превращением паров в мельчайшие водяные капельки при увеличении влажности воздуха. Образование капелек происходит в случае наличия в воздухе мельчайших частиц (пыль, частицы соли, продукты сгорания и т.п.).

Туманом называют совокупность взвешенных в воздухе капель воды или кристаллов льда, ухудшающих дальность видимости до значений менее 1 км. При видимости до 10 км эта совокупность взвешенных капель или кристаллов льда носит название дымки. Наряду с понятием дымки существует понятие мглы, ухудшающей видимость за счет взвешенных в воздухе твердых частиц. В отличие тумана и дымки влажность воздуха в период мглы значительно меньше 100 %.

В зависимости от дальности видимости различают следующие виды тумана и дымки:

  • сильный туман (<50 м);
  • умеренный туман (50-500 м);
  • слабый туман (500-1000 м);
  • сильная дымка (1-2 км);
  • умеренная дымка (2-4 км);
  • слабая дымка (4-10 км).

Туманы оказывают существенное влияние на судоходство и эксплуатацию портов. На реках туманы, как правило, кратковременны и рассеиваются в течение суток. На побережьях морей продолжительность туманов может достигать 2-3 недель. В некоторых портах Балтийского, Черноморского и Дальневосточного бассейнов в году наблюдается до 60-80 дней с туманами. Основными сведениями для портостроения являются среднее и максимальное число дней с туманами, а также периоды времени, в течение которых они наблюдаются.

Осадки . Капли воды и кристаллы льда, выпадающие из атмосферы на земную поверхность, называются осадками. Количество осадков измеряют толщиной слоя жидкой воды, который мог бы образоваться после выпадения осадков на горизонтальную непроницаемую поверхность. Интенсивность осадков – количество (мм) за единицу времени.

В соответствии с формой различают следующие виды осадков:

  • морось – однородные осадки, состоящие из мелких (капель радиусом менее 0,25 мм), не имеющих выраженного направленного движения; скорость падения мороси в неподвижном воздухе не превышает 0,3 м/с;
  • дождь – жидкие водяные осадки, состоящие из капель размером более 0,25 мм (до 2,5-3,2 мм); скорость падения капель дождя достигает 8-10 м/с;
  • снег – твердые кристаллические осадки размером до 4-5 мм;
  • мокрый снег – осадки в виде тающих снежинок;
  • крупа – осадки из ледяных и сильно обзерненных снежинок радиусом до 7,5 мм;
  • град – частицы округлой формы с ледяными прослойками различной плотности, радиус частиц обычно составляет 1-25 мм, отмечены случаи выпадения градин радиусами более 15 см.

Осадки характеризуются количеством (среднегодовой толщиной слоя воды в мм), суммарным, средним и максимальным числом дней в году с дождем, снегом или градом, а также периодами их выпадения. Определяющее значение эти сведения имеют при проектировании и эксплуатации причалов для переработки грузов боящихся влаги, а также для правильного расположения дренажных и ливневых коммуникаций, предохраняющих территорию порта от затопления. В некоторых портах среднегодовое количество осадков (в мм) составляет: Батуми - 2460; Калининград - 700; Санкт-Петербург - 470; Одесса - 310; Баку - 240.

Смерчи – вихри, в которых воздух вращается со скоростью до 100 м/с и более. Диаметр смерча на водной поверхности составляет 50-200 м, видимая высота – 800-1500 м. В связи с влиянием центробежной силы давление воздуха в смерче значительно понижается. Это обуславливает развитие всасывающей силы. Проходя над водной поверхностью смерчи всасывают значительные массы воды.

Контрольные вопросы:

mob_info