2 термоядерный синтез проблема термоядерной энергетики. Термоядерной энергетики не будет никогда




Самостоятельно передвигающиеся машины должны решить сразу несколько проблем: снизить аварийность, вернуть человечеству время, уходящее на вождение. Разработкой таких машин в данный момент занимаются в Google уже даже было проведено испытание в условиях реального уличного трафика. На пути прогресса стоят как технологические препятствия (на автостраде тестовые автомобили Google чувствуют себя отлично, но городские улочки даются им сложнее), так и закон: власти пока что не горят желанием пускать такие автомобили на дороги общего пользования. АВТОМОБИЛИ БУДУТ ЕЗДИТЬ САМИ


Технологии Kinect и Leap Motion уже умеют распознавать жесты с помощью камер. А браслет MYO предлагает считывать электрическую активность мышц рук. Смартфоны тем временем обзаводятся специальными процессорами, следящими за их собственным расположением в пространстве (Moto X, iPhone 5S). Техника, когда-то заменившая людям реальный мир виртуальным, ­теперь сама вовсю изучает физические свойства тел вокруг себя. МОЖНО БУДЕТ УПРАВЛЯТЬ ТЕХНИКОЙ ЖЕСТАМИ


С нашумевшей питательной смесью Soylent, якобы заменяющей всю необходимую человеку пищу, все неясно: серьезных исследований, подтверждающих или опровергающих ее эффективность, пока что не появилось. Однако этим эксперименты с едой не ограничиваются: например, пищу пытаются изготавливать с помощью 3D-принтеров принтеры Choc Edge, печатающие шоколад, уже можно купить в интернете. ОБЕД БУДУТ ПЕЧАТАТЬ НА 3D- ПРИНТЕРЕ


В 2005-м Gorillaz нашумели своим голографическим выступлением на MTV ­Europe Music Awards, в 2010-м на сцене в виде голограммы появилась японская виртуальная певица Хацунэ Мику (другое концертное воплощение для нее, в общем-то, и невозможно). Но настоящим фурором стало выступление на фестивале Coachella в м рэпера Тупака, убитого в 1996-м. Технология уже есть, осталось только разобраться с правами и можно собирать «Вудсток» 1969 года. МОЖНО БУДЕТ СХОДИТЬ НА КОНЦЕРТ NIRVANA ИЛИ ГРУППЫ «КИНО»


Уже сегодня компания Advanced Arm Dynamics устанавливает пациентам вместо обычных протезов функциональные бионические руки, которыми можно, например, печатать на клавиатуре. Есть похожие разработки и в области глаз: теоретически даже после полной потери зрения можно будет видеть цифровую картинку. Бионическим рукам и ногам пока не хватает двусторонней связи чтобы не только получать команды от мозга, но и отправлять ему тактильные, болевые, температурные и мышечные отклики. Однако и этот барьер уже почти преодолен учеными Университета Чикаго. ЛЮДИ СТАНУТ КИБОРГАМИ


В начале 2014 года европейская компания Plastic Logic представила продукт под названием Papertab. Полностью функциональный планшетный компьютер с сенсорным экраном не только тонкий как лист бумаги, но и такой же гибкий, и обладает теми же отражающими свойствами. Компания планирует наладить массовое производство подобных устройств в течение 5-10 лет, и сделать их недорогими и интерактивным. Потребитель может работать сразу с несколькими устройствами, взаимодействующими друг с другом. ПОВСЕМЕСТНОЕ ИСПОЛЬЗОВАНИЕ ТОНКИХ И ГИБКИХ КОМПЬЮТЕРОВ И СМАРТФОНОВ


Поезд-маглев находится в разработке уже в течение достаточно долгого времени. Недавние успешные тестовые запуски могилева в Японии означают, что есть вероятность того, что к 2045 году во всех странах появятся поезда, способные достигать скорости более 480 км/ч. У них нет колес, таким образом, исключено трение и контакт с путями. Такие поезда как бы левитируют над путями благодаря электромагнитному полю. Японская модель впечатляет, однако одна компания из небольшом городка в Колорадо Лонгмонт устранила еще один барьер, влияющий на скорость, а именно сопротивление ветра. ТУННЕЛИ ДЛЯ СВЕРХСКОРОСТНЫХ ПОЕЗДОВ


Понятие «беспроводная электроэнергия» витает в воздухе намного дольше, чем можно было бы подумать. Никола Тесла, возможно, разработал бы подобную технологию еще в прошлом веке, если не был бы так беден. Сегодня подобное явление мало известно, но оно, безусловно, существует. Появились беспроводные зарядные устройства, которые становятся все более популярны. Такие компании как Witricity заняты разработкой электрического «узла», который мог бы питать весь дом. Их прототип называется «Prodigy» и основывается на исследовании, проведенном физиком Марином Солячичем (Marin Soljacic) из Массачусетского технологического института. Появились беспроводные зарядные устройства, которые становятся все более популярны. Такие компании как Witricity заняты разработкой электрического «узла», который мог бы питать весь дом. Их прототип называется «Prodigy» и основывается на исследовании, проведенном физиком Марином Солячичем (Marin Soljacic) из Массачусетского технологического института. БЕСПРОВОДНОЕ ЭЛЕКТРИЧЕСТВО


Деление ядра (процесс, при котором атомные электростанции производят энергию) контролировать гораздо легче, чем ядерный синтез (процесс, из-за которого солнце обжигает, а ядерное оружие работает). Малые термоядерные реакторы существуют уже давно, но устойчивых крупномасштабных нет. Консорциум семи «государств» (США, ЕС, России, Китая, Японии, Южной Кореи и Индии) выбрал место во Франции для постройки первого в мире крупного термоядерного реактора. Ученые признают, что могут пройти десятилетия, прежде чем он заработает, однако ядерный синтез дает в три- четыре раза больше энергии, чем деление. УСТОЙЧИВЫЙ ТЕРМОЯДЕРНЫЙ РЕАКТОР


В ближайшие несколько десятков лет огромных успехов может достичь солнечная и ветряная энергетика. Люди изучают способы производить топливо из любого сырья от пшеницы до водорослей. Наша зависимость от нефти и угля по-прежнему довольно прочна, но уже начинает ослабевать. В ближайшие десять лет можно ожидать бума альтернативной энергетики электромобилей, солнечных панелей на домах и много-много жалоб от руководителей нефтяных компаний. БИОТОПЛИВО И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ГОУ ВПО «Благовещенский государственный педагогический университет»

Физико-математический факультет

Кафедра общей физики

Курсовая работа

на тему: Проблемы термоядерного синтеза

по дисциплине: Физика

Исполнитель: В.С. Клетченко

Руководитель: В.А. Евдокимова

Благовещенск 2010

Введение

Проект ИТЭР

Заключение

Литература

Введение

В настоящее время человечество не может представить свою жизнь без электроэнергии. Она везде. Но традиционные способы получения электроэнергии не дешевые: только представить возведение ГЭС или реактора АЭС, то сразу становится понятно почему. Ученые 20-го века, перед лицом энергетического кризиса, нашли способ получения электроэнергии из вещества, количество которого не ограничено. Термоядерные реакции протекают при распаде дейтерия и трития. В одном литре воды содержится дейтерия столько, что при термоядерном синтезе может выделиться столько энергии, сколько получается при сжигании 350 литров бензина. То есть можно сделать вывод, что вода - это неограниченный источник энергии.

Если бы получение энергии с помощью термоядерного синтеза было бы настолько просто, как при помощи ГЭС, то человечество никогда не испытывало бы кризиса в энергетике. Для получения энергии таким способом необходима температура, эквивалентная температуре в центре солнца. Где взять такую температуру, как дорого будут стоить установки, насколько выгодна такая добыча энергии и безопасна ли такая установка? На эти вопросы будет дан ответ в настоящей работе.

Цель работы: изучение свойств и проблем термоядерного синтеза.

Термоядерные реакции и их энергетическая выгодность

Термоядерная реакция - синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер.

Известно, что ядро атома водорода представляет собой протон р. Такого водорода очень много в природе – в воздухе и в воде. Кроме этого существуют более тяжелые изотопы водорода. Ядро одного из них содержит, кроме протона р, еще и нейтрон n. Называется этот изотоп дейтерием D. Ядро другого изотопа содержит, кроме протона р два нейтрона n и называется тритерием (тритием) Т. Термоядерные реакции наиболее эффективно происходят при сверхвысоких температурах порядка 10 7 – 10 9 К. При термоядерных реакциях выделяется очень большая энергия, превышающая энергию, которая выделяется при делении тяжелых ядер. В реакции синтеза выделяется энергия, которая в расчете на 1кг вещества значительно больше энергии, выделяющейся в реакции деления урана. (Здесь под выделяющейся энергией понимается кинетическая энергия частиц, образующихся в результате реакции.) Например, при реакции слияния ядер дейтерия 1 2 D и трития 1 3 Т в ядро гелия 2 4 Не:

1 2 D + 1 3 Т → 2 4 Не + 0 1 n,

Выделяется энергия, приблизительно равная 3,5 МэВ на один нуклон. В реакциях деления энергия на один нуклон составляет около 1 МэВ.

При синтезе ядра гелия из четырех протонов:

4 1 1 p→ 2 4 Не + 2 +1 1 е,

выделяется еще большая энергия, равная 6,7 МэВ на одну частицу. Энергетическая выгодность термоядерных реакций объясняется тем, что удельная энергия связи в ядре атома гелия значительно превышает удельную энергию связи ядер изотопов водорода. Таким образом, при удачном осуществлении управляемых термоядерных реакций человечество получит новый мощный источник энергии.

Условия протекания термоядерных реакций

Для слияния легких ядер необходимо преодолеть потенциальный барьер, обусловленный кулоновским отталкиванием протонов в одноименно положительно заряженных ядрах. Для слияния ядер водорода 1 2 D их надо сблизить на расстояние r, равное приблизительно r ≈ 3 10 -15 м. Для этого нужно совершить работу, равную электростатической потенциальной энергии отталкивания П=е 2 : (4πε 0 r) ≈ 0,1 МэВ. Ядра дейтона смогут преодолеть такой барьер, если при соударении их средняя кинетическая энергия 3 / 2 kT будет равна 0,1 МэВ. Это возможно при Т=2 10 9 К. Практически температура, необходимая для протекания термоядерных реакций снижается на два порядка и составляет 10 7 К.

Температура порядка 10 7 К характерна для центральной части Солнца. Спектральный анализ показал, что в веществе Солнца, как и многих других звезд, имеется до 80% водорода и около 20% гелия. Углерод, азот и кислород составляют не более 1% массы звезд. При огромной массе Солнца (≈ 2 10 27 кг) количество этих газов достаточно велико.

Термоядерные реакции происходят на Солнце и звездах и являются источником энергии, обеспечивающим их излучение. Ежесекундно Солнце излучает энергию3,8 10 26 Дж, что соответствует уменьшению его массы на 4,3 млн. тонн. Удельное выделение энергии Солнца, т.е. выделение энергии, приходящееся на единицу массы Солнца в одну секунду, равно 1,9 10 -4 Дж/с кг. Оно весьма мало и составляет около 10 -3 % от удельного выделения энергии в живом организме в процессе обмена веществ. Мощность излучения Солнца практически не изменилась за много миллиардов лет существования Солнечной системы.

Один из путей протекания термоядерных реакций на Солнце – углеродно-азотный цикл, в котором соединение ядер водорода в ядро гелия облегчается в присутствии ядер углерода 6 12 С играющих роль катализаторов. В начале цикла быстрый протон проникает в ядро атома углерода 6 12 С и образует неустойчивое ядро изотопа азота 7 13 N с излучением γ-кванта:

6 12 С + 1 1 p→ 7 13 N + γ.

С периодом полураспада 14 минут в ядре 7 13 N происходит превращение 1 1 p→ 0 1 n + +1 0 е + 0 0 ν е и образуется ядро изотопа 6 13 С:

7 13 N→ 6 13 С + +1 0 е + 0 0 ν е.

приблизительно через каждые 32 млн. лет ядро 7 14 N захватывает протон и превращается в ядро кислорода 8 15 О:

7 14 N+ 1 1 p→ 8 15 О + γ.

Неустойчивое ядро 8 15 О с периодом полураспада 3 минуты испускает позитрон и нейтрино и превращается в ядро 7 15 N:

8 15 О→ 7 15 N+ +1 0 е+ 0 0 ν е.

Цикл завершается реакцией поглощения ядром 7 15 N протона с распадом его на ядро углерода 6 12 С и α-частицу. Это происходит приблизительно через 100 тысяч лет:

7 15 N+ 1 1 p→ 6 12 С + 2 4 Не.

Новый цикл начинается вновь с поглощением углеродом 6 12 С протона, исходящего в среднем через 13 миллионов лет. Отдельные реакции цикла отдалены во времени промежутками, которые являются по земным масштабам времени непомерно большими. Однако цикл является замкнутым и происходит непрерывно. Поэтому различные реакции цикла происходят на Солнце одновременно, начавшись в разные моменты времени.

В результате этого цикла четыре протона сливаются в ядро гелия с появлением двух позитронов и γ-излучения. К этому нужно добавить излучение, возникающее при слиянии позитронов с электронами плазмы. При образовании одного гамматома гелия выделяется 700 тысяч кВт ч энергии. Это количество энергии компенсирует потери энергии Солнца на излучение. Расчеты показывают, что количества водорода, имеющегося на Солнце, хватит на поддержание термоядерных реакций и излучения Солнца на миллиарды лет.

Осуществление термоядерных реакций в земных условиях

Осуществление термоядерных реакций в земных условиях создаст огромные возможности для получения энергии. Например, при использовании дейтерия, содержащегося в одном литре воды, в реакции термоядерного синтеза выделится столько же энергии, сколько выделится при сгорании примерно 350 литров бензина. Но если термоядерная реакция будет протекать самопроизвольно, то произойдет колоссальный взрыв, так как выделяющаяся при этом энергия очень велика.

Условия, близкие к тем, что реализуются в недрах Солнца, были осуществлены в водородной бомбе. Там происходит самоподдерживающаяся термоядерная реакция взрывного характера. Взрывчатым веществом является смесь дейтерия 1 2 D с тритием 1 3 Т. Высокая температура, необходимая для протекания реакции, получается за счет взрыва обычной атомной бомбы, помещенной внутри термоядерной.

Основные проблемы, связанные с осуществлением термоядерных реакций

В термоядерном реакторе реакция синтеза должна происходить медленно, должна быть возможность управлять ею. Изучение реакций, происходящих в высокотемпературной дейтериевой плазме, является теоретической основой получения искусственных управляемых термоядерных реакций. Основной трудностью является поддержание условий, необходимых для получения самоподдерживающейся термоядерной реакции. Для такой реакции необходимо, чтобы скорость выделения энергии в системе, где происходит реакция, была не меньше, чем скорость отвода энергии от системы. При температурах порядка 10 8 К термоядерные реакции в дейтериевой плазме обладают заметной интенсивностью и сопровождаются выделением большой энергии. В единице объема плазмы при соединении ядер дейтерия выделяется мощность 3кВт/м 3 . При температурах порядка 10 6 К мощность составляет всего лишь 10 -17 Вт/м 3 .

А как практически использовать выделяющуюся энергию? При синтезе дейтерия с тритерием основная часть выделившейся энергии (около 80%) проявляется в форме кинетической энергии нейтронов. Если вне магнитной ловушки замедлить эти нейтроны, то можно получить теплоту, а затем преобразовать ее в электрическую энергию. При реакции синтеза в дейтерии примерно 2/3 высвобожденной энергии несут заряженные частицы – продукты реакции и только 1/3 энергии – нейтроны. А кинетическую энергию заряженных частиц можно непосредственно преобразовать в электрическую энергию.

Какие же условия нужны для осуществления реакций синтеза? В этих реакциях ядра должны соединиться друг с другом. Но каждое ядро заряжено положительно, значит, между ними действуют силы отталкивания, которые определяются законом Кулона:

, r 2 Z 1 Z 2 e 2 F~

Где Z 1 e – заряд одного ядра, Z 2 e – заряд второго ядра, а e – модуль заряда электрона. Для того, чтобы соединится друг с другом, ядра должны преодолеть кулоновские силы отталкивания. Эти силы становятся очень большими, когда ядра сближаются. Наименьшими силы отталкивания будут в случае ядер водорода, имеющих наименьший заряд (Z=1). Чтобы преодолеть кулоновские силы отталкивания и соединиться ядра должны обладать кинетической энергией примерно 0,01 – 0,1 МэВ. Такой энергии соответствует температура порядка 10 8 – 10 9 К. А это больше, чем температура даже в недрах Солнца! Из-за того, что реакции синтеза происходят при очень высоких температурах, их называют термоядерными.

Термоядерные реакции могут быть источником энергии, если выделение энергии будет превосходить затраты. Тогда, как говорят, процесс синтеза будет самоподдерживающимся.

Температуру, при которой это происходит, называют температурой зажигания или критической температурой. Для реакции DT (дейтерий – тритерий) температура зажигания составляет около 45 млн. К, а для реакции DD (дейтерий – дейтерий) около 400 млн. К. Таким образом для протекания реакций DT нужны гораздо меньшие температуры, чем для реакций DD. Поэтому исследователи плазмы отдают предпочтение реакциям DT, хотя тритий в природе не встречается, а для его воспроизводства в термоядерном реакторе надо создавать особые условия.

Как же удержать плазму в какой-то установке – термоядерном реакторе – и нагреть ее так, чтобы начался процесс синтеза? Потери энергии в высокотемпературной плазме связаны главным образом с уходом тепла через стенки устройства. Плазму необходимо изолировать то стенок. С этой целью применяются сильные магнитные поля (магнитная термоизоляция плазмы). Если через столб плазмы в направлении его оси пропустить большой электрический ток, то в магнитном поле этого тока возникают силы, которые сжимают плазму в плазменный шнур, оторванный от стенок. Удержание плазмы в отрыве от стенок и борьба с различными неустойчивостями плазмы являются сложнейшими задачами, решение которых должно привести к практическому осуществлению управляемых термоядерных реакций.

Ясно, что, чем выше концентрация частиц, тем чаще они сталкиваются друг с другом. Поэтому может показаться, что для осуществления термоядерных реакций надо использовать плазму большой концентрации частиц. Однако если концентрация частиц будет такой, как концентрация молекул в газах при нормальных условиях (10 25 м -3 ), то при термоядерных температурах давление в плазме было бы колоссальным – порядка 10 12 Па. Такое давление не сможет выдержать ни одно техническое устройство! Чтобы давление составляло величину порядка 10 6 Па и соответствовало прочности материала, термоядерная плазма должна быть сильно разреженной (концентрация частиц должна быть порядка 10 21 м -3 ) .Однако в разреженной плазме соударение частиц друг с другом происходят реже. Чтобы в этих условиях могла поддерживаться термоядерная реакция, надо увеличить время пребывания частиц в реакторе. В связи с этим удержательная способность ловушки характеризуется произведением концентрации n частиц на время t их удержания в ловушке.

Оказывается, что для реакции DD

nt>10 22 м -3. с,

а для реакции DT

nt>10 20 м -3. с.

Отсюда видно, что для реакции DD при n=10 21 м -3 время удержания должно быть больше 10 с; если же n=10 24 м -3 , то достаточно, чтобы время удержания превышало 0,1 с.

Для смеси дейтерия с тритием при n=10 21 м -3 термоядерная реакция синтеза может начаться, если время удержания плазмы больше 0,1 с, а при n=10 24 м -3 достаточно, чтобы это время было больше 10 -4 с. Таким образом, при одинаковых условиях необходимое время удержания реакции DT может быть значительно меньше, чем в реакциях DD. В этом смысле реакцию DT легче осуществить, чем реакцию DD.

Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК»

Физики настойчиво ищут путей овладения энергией термоядерных реакций синтеза. Уже сейчас такие реакции реализуются в различных термоядерных установках, но выделяющаяся в них энергия еще не оправдывает затраты средств и труда. Другими словами, существующие термоядерные реакторы пока экономически не выгодны. Среди различных программ термоядерных исследований в настоящее время наиболее перспективной считается программа, основанная на реакторах типа токамак. Первые исследования кольцевых электрических разрядов в сильном продольном магнитном поле были начаты в 1955 г. под руководством советских физиков И.Н.Головина и Н.А.Явлинского. Построенная ими тороидальная установка была довольно крупной даже по современным масштабам: она была рассчитана на разряды с силой тока до 250 кА. И.Н.Головин предложил для таких установок название «токамак» (токовая камера, магнитная катушка). Это название используется физиками всего мира.

До 1968 г. исследования на токамаках развивались главным образом в Советском Союзе. Сейчас в мире более 50 установок типа токамак.

На рисунке 1 изображена типичная конструкция токамака. Продольное магнитное поле в нем создается катушками с током, охватывающими тороидальную камеру. Кольцевой ток в плазме возбуждается в камере как во вторичной обмотке трансформатора при разрядке батареи конденсаторов через первичную обмотку 2. Плазменный шнур заключен в тороидальную камеру – лайнер 4, изготовленный из тонкой нержавеющей стали толщиной в несколько миллиметров. Лайнер окружен медным кожухом 5 толщиной в несколько сантиметров. Назначение кожуха – стабилизировать медленные длинноволновые изгибы плазменного шнура.

Эксперименты на токамаках позволили установить, что время удержания плазмы (величина, характеризующая длительность сохранения плазмой необходимой высокой температуры) пропорциональна площади сечения плазменного шнура и индукции продольного магнитного поля. Магнитная индукция может быть весьма большой при использовании сверхпроводящих материалов. Другая возможность повышения времени удержания плазмы состоит в увеличении поперечного сечения плазменного шнура. Это значит, что необходимо увеличить размеры токамаков. Летом в 1975 году в Институте атомной энергии имени И.В. Курчатова вступил в строй самый крупный токамак – Т-10. В нем получены следующие результаты: температура ионов в центре шнура 0,6 – 0,8 кЭв, средняя концентрация частиц 8 . 10 19 м -3 , энергетическое время удержания плазмы 40 – 60 мс, основной параметр удержания nt~(2,4-7,2) . 10 18 м -3. с.

Более крупными установками являются так называемые демонстрационные токамаки, которые вступили в строй до 1985 года. Токамаком такого типа является Т-20. Он имеет весьма внушительные размеры: большой радиус тора равен 5 метрам, радиус тороидальной камеры – 2 метра, объем плазмы – около 400 кубических метров. Целью сооружения таких установок является не только проведение физических экспериментов и исследований. Но и разработка различных технологических аспектов проблемы – выбор материалов, изучение изменения их свойств при повышенных тепловых и радиационных воздействиях и т.д. Установка Т-20 предназначена для получения реакции смеси DT. В этой установке предусматривается надежная защита от мощного рентгеновского излучения, потока быстрых ионов и нейтронов. Предполагается использовать энергию потока быстрых нейтронов (10 17 м -2. с), которые в специальной защитной оболочке (бланкете) будет замедляться, и отдавать свою энергию теплоносителю. Кроме того, если в бланкете будет содержаться изотоп лития 3 6 Li, то он под действием нейтронов будет превращаться в тритий, который в природе не существует.

Токамаки следующего поколения будут представлять собой уже опытно-промышленные термоядерные электростанции, и они в конечном счете должны будут производить электроэнергию. Предполагается, что они будут реакторами «гибридного типа», в которых бланкет будет содержать делящийся материал (уран). Под действием быстрых нейтронов в уране будет происходить реакция деления, что повысит общий энергетический выход установки.

Итак, токамаки представляют собой устройства, в которых плазма нагревается до высоких температур и удерживается. Как осуществляется в токамаках нагрев плазмы? Прежде всего, плазма в токамаке нагревается вследствие протекания электрического тока это, как говорят, омический нагрев плазмы. Но при очень высоких температурах сопротивление плазмы сильно падает и омический нагрев становится неэффективным, поэтому сейчас исследуются различные методы дополнительного повышения температуры плазмы, такие как инжекция в плазму быстрых нейтральных частиц и высокочастотный нагрев.

Нейтральные частицы не испытывают никакого действия со стороны магнитного поля, удерживающего плазму, и поэтому могут быть легко «впрыснуты», инжектированы в плазму. Если эти частицы обладают большой энергией, то, попав в плазму, они ионизуются и при столкновениях с частицами плазмы передают им часть своей энергии, и плазма нагревается. Сейчас достаточно хорошо разработаны методы получения потоков нейтральных частиц (атомов) с большой энергией. С этой целью с помощью специальных устройств – ускорителей – заряженным частицам сообщается очень большая энергия. Затем этот поток заряженных частиц специальными методами нейтрализуют. В результате получается поток высокоэнергетических нейтральных частиц.

Высокочастотный нагрев плазмы может осуществляться с помощью внешнего высокочастотного электромагнитного поля, частота которого совпадает с одной из собственных частот плазмы (условия резонанса). При выполнении этого условия частицы плазмы сильно взаимодействуют с электромагнитным полем, и происходит перекачка энергии поля в энергию плазмы (плазма нагревается).

Хотя программа токамаков считается наиболее перспективной для термоядерного синтеза, физики не прекращают исследований по другим направлениям. Так, последние достижения по удержанию плазмы в прямых системах с магнитными пробками вселяют оптимистические надежды на создание на основе таких систем энергетического термоядерного реактора.

Для устойчивого удержания плазмы с помощью описанных устройств в ловушке создаются условия, при которых магнитное поле нарастает от центра ловушки к ее периферии. Нагрев плазмы осуществляется с помощью инжекции нейтральных атомов.

Как в токамаках, так и в пробкотронах для удержания плазмы необходимо очень сильное магнитное поле. Однако существуют направления решения проблемы термоядерного синтеза, при реализации которых отпадает необходимость создания сильных магнитных полей. Это так называемые лазерный синтез и синтез с помощью релятивистских электронных пучков. Суть этих решений состоит в том, что на твердую «мишень», состоящую из замороженной смеси DT, со всех сторон направляют либо мощное лазерное излучение, либо пучки релятивистских электронов. В результате мишень должна сильно нагреваться, ионизоваться и в ней взрывным образом должна произойти реакция синтеза. Однако практическое воплощение этих идей сопряжено со значительными трудностями, в частности из-за отсутствия лазеров, обладающих необходимой мощностью. Тем не менее, в настоящее время интенсивно разрабатываются проекты термоядерного реактора на основе этих направлений.

К решению проблемы могут привести различные проекты. Ученые надеются, что, в конце концов, удастся осуществить управляемые реакции термоядерного синтеза и тогда человечество получит источник энергии на многие миллионы лет.

Проект ИТЭР

Уже в самом начале проектирования токамаков нового поколения стало ясно, насколько они сложны и дороги. Возникла естественная мысль о международном сотрудничестве. Так появился проект ИТЭР (Интернациональный Термоядерный Энергетический Реактор), в разработке которого участвуют объединение «Евратом», СССР, США и Япония. Сверхпроводящий соленоид ИТЭРа на основе нитрата олова должен охлаждаться жидким гелием при температуре 4 К или жидким водородом при 20 К. Увы, не сбылись мечты о более «теплом» соленоиде из сверхпроводящей керамики, который мог бы работать при температуре жидкого азота (73 К). Расчеты показали, что он только ухудшит систему, поскольку, кроме эффекта сверхпроводимости, свой вклад будет вносить и проводимость его медной подложки.

В соленоиде ИТЭРа запасается огромная энергия - 44 ГДж, что эквивалентно заряду около 5 т тротила. В целом электромагнитная система этого реактора по мощности и сложности на два порядка превзойдет самые крупные действующие установки. По электрической мощности он будет эквивалентен Днепрогэсу (около 3 ГВт), а его общая масса составит примерно 30 тыс. т.

Долговечность реактора определяет прежде всего первая стенка тороидальной камеры, находящаяся в самых напряженных условиях. Кроме термических нагрузок, она должна пропускать и частично поглощать мощный поток нейтронов. По расчетам, стенка из наиболее подходящих сталей сможет выдержать не более 5 – 6 лет. Таким образом, при заданной длительности работы ИТЭРа – 30 лет – стенку потребуется менять 5 – 6 раз. Для этого реактор придется почти полностью разбирать с помощью сложных и дорогих дистанционных манипуляторов - ведь только они смогут проникнуть в радиоактивную зону.

Такова цена даже опытного термоядерного реактора - чего же потребует промышленный?

Современные исследования плазмы и термоядерных реакций

Основным направлением в исследованиях по физике плазмы и управляемому термоядерному синтезу, проводимых в Институте ядерного синтеза, по-прежнему остается активное участие в разработке технического проекта международного экспериментального термоядерного реактора ИТЭР.

Работы эти получили новый импульс после подписания 19 сентября 1996 года Председателем правительства РФ В.С. Черномырдиным Постановления об утверждении федеральной целевой научно-технической программы "Международный термоядерный реактор ИТЭР и научно-исследовательские и опытно-конструкторские работы в его поддержку на 1996-1998 годы". В Постановлении подтверждены обязательства по проекту, принятые на себя Россией, и рассмотрены вопросы их ресурсного обеспечения. Группа сотрудников откомандирована для работы в центральных проектных коллективах ИТЭР в США, Японии и Германии. В рамках "домашнего" задания в Институте ведутся экспериментальные и расчетно-теоретические работы по моделированию элементов конструкций бланкета ИТЭР, разработке научной базы и технического обеспечения систем нагрева плазмы и неиндукционного поддержания тока с помощью электронно-циклотронных волн и нейтральной инжекции.

В 1996 году в ИЯС проведены стендовые испытания прототипов квазистационарных гиротронов, разрабатываемых в России для систем ЭЦР-предыонизации и нагрева плазмы ИТЭР. Ведутся макетные испытания новых методик диагностики плазмы - зондирования плазмы пучком тяжелых ионов (совместно с Харьковским физико-техническим институтом) и рефлектометрии. Изучаются проблемы обеспечения безопасности термоядерных энергетических систем и связанные с ними вопросы формирования нормативной базы. Выполнен цикл модельных расчетов механической реакции конструкций бланкета реактора на динамические процессы в плазме, такие, как срывы тока, смещения плазменного шнура и т.п. В феврале 1996 года в Москве было проведено тематическое совещание по диагностическому обеспечению ИТЭР, в котором приняли участие представители всех сторон проекта.

Уже 30 лет (с 1973 года) активно ведутся совместные работы в рамках российско (советско) - американского сотрудничества по УТС с магнитным удержанием. И в сегодняшнее трудное для российской науки время пока еще удается сохранять достигнутый в прошедшие годы научный уровень и спектр совместных исследований, ориентированных в первую очередь на физическое и научно-инженерное обеспечение проекта ИТЭР. В 1996 году специалисты Института продолжали участвовать в дейтерий-тритиевых экспериментах на токамаке TFTR в Принстонской лаборатории физики плазмы. В ходе этих экспериментов, наряду с существенными успехами по изучению механизма самонагрева плазмы образующимися в термоядерной реакции α-частицами нашла практическое подтверждение идея улучшения удержания высокотемпературной плазмы в токамаках за счет создания в центральной зоне магнитной конфигурации с так называемым обратным широм. Продолжены совместно с отделом физики плазмы компании " GeneralAtomic" взаимодополняющие исследования неиндукционного поддержания тока в плазме с помощью СВЧ-волн в диапазоне электронного циклотронного резонанса на частоте 110-140 МГц. При этом осуществлялся взаимный обмен уникальной диагностической аппаратурой. Подготовлен эксперимент по дистанционной on-line обработке в ИЯС результатов измерений на токамаке DIII-D в Сан-Диего, для чего в Москву будет передана рабочая станция «Alfa». С участием Института Ядерного Синтеза завершается создание на DIII-D мощного гиротронного комплекса, ориентированного на квазистационарный режим работы. Интенсивно ведутся совместные расчетно-теоретические работы по изучению процессов срыва тока в токамаках (одна из основных физических проблем ИТЭР на сегодняшний день) и моделированию процессов переноса с участием теоретиков Принстонской лаборатории, Техасского университета и " GeneralAtomic". Продолжается сотрудничество с Аргоннской национальной лабораторией по проблемам взаимодействия плазма-стенка и разработке перспективных малоактивируемых материалов для энергетических термоядерных реакторов.

В рамках российско-германской программы по мирному использованию атомной энергии ведется многоплановое сотрудничество с Институтом физики плазмы им. Макса Планка, Ядерным исследовательским центром в Юлихе, Штутгартским и Дрезденским техническими университетами. Сотрудники Института участвовали в разработке, а теперь и в эксплуатации гиротронных комплексов стелларатора Wendelstein W7-As и токамака ASDEX-U в Институте М. Планка. Совместно разработан численный код для обработки результатов измерений спектра энергии частиц перезарядки применительно к токамакам Т-15 и ADEX-U. Продолжены работы по анализу и систематизации опыта эксплуатации инженерных систем токамаков TEXTOR и Т-15. Для совместных экспериментов на TEXTOR подготавливается рефлектометрическая система диагностики плазмы. Существенная информация накоплена в рамках долгосрочной совместной работы с Дрезденским техническим университетом по выбору и анализу малоактивируемых материалов, перспективных для конструкций будущих термоядерных реакторов. Сотрудничество со Штутгартским университетом ориентировано на изучение технологических проблем повышения надежности гиротронов большой мощности (совместно с Институтом прикладной физики РАН РФ). Вместе с Берлинским филиалом Института М. Планка проводятся работы по совершенствованию методики использования диагностической станции WASA-2 для поверхностного анализа материалов, подвергающихся воздействию высокотемпературной плазмы. Станция была разработана специально для токамака Т-15.

По двум линиям ведется сотрудничество с Францией. Совместные экспериментальные исследования по физике сильноточных ионных источников, в частности источников отрицательных ионов водорода, и по плазменным движителям для космических аппаратов проводятся с отделом физики плазмы Ecole Polytechnique. Продолжаются совместные работы по изучению процессов скоростного сжатия проводящих цилиндрических оболочек сверхсильными магнитными полями с исследовательским центром De-Gramat. В Институте разработана и сооружается установка для получения импульсных магнитных полей субмегагауссного диапазона (на контрактной основе).

Проводятся консультации специалистов Швейцарского центра исследований в области физики плазмы Suisse Ecole Poytechnique по использованию метода электронно-циклотронного нагрева плазмы. Согласована долгосрочная программа сотрудничества по УТС с Ядерным центром Фраскати (Италия).

"Зонтиковое" соглашение о взаимном научном обмене подписано с Японским национальным центром по плазменным исследованиям (Нагойя). Выполнен ряд совместных теоретических и расчетно-теоретических исследований по механизмам переносов в плазме токамаков и вопросам удержания в стеллараторах (применительно к сооружаемому в Японии крупному гелиотрону LHD).

В Институте физики плазмы Китайской академии наук (г.Хефей) начаты полномасштабные эксперименты на сверхпроводящем токамаке НТ-7, созданном на основе нашего токамака Т-7. На контрактной основе в Институте для НТ-7 готовится несколько диагностических систем.

Специалисты Института неоднократно приглашались компанией "Самсунг" для консультирования работ по проектированию крупного сверхпроводящего токамака START, который Южная Корея планировала соорудить к 1999 году. Это крупнейшая термоядерная установка в мире к этому времени.

Институт является головной организацией по шести проектам Международного научно-технического центра ISTC (тритиевый цикл термоядерного реактора, технологическое применение ионной имплантации, плазменная диагностика, лидарная система экологического контроля атмосферы, система рекуперации для комплексов инжекционного нагрева плазмы в термоядерных системах, источники низкотемпературной плазмы для технологических целей).

Заключение

Идея создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было решено отказаться, поскольку ученые были не в состоянии решить множество технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось «заставить» реактор произвести хоть сколько-нибудь термоядерной энергии.

В ходе написания курсовой работы мною были подняты вопросы по созданию и основным проблемам термоядерного синтеза, и как оказалось, создание установок для получения термоядерного синтеза – это и есть проблема, но не основная. К основным проблемам можно отнести удержание плазмы в реакторе и создание оптимальных условий: произведением концентрации n частиц на время t их удержания в ловушке и созданиям температуры, приблизительно равной температуре в центре солнца.

Несмотря на все сложности создания управляемого термоядерного синтеза, ученые не отчаиваются и ищут решения проблем, т.к. при удачном осуществлении реакции синтеза будет получен колоссальный источник энергии, во многом превосходящий любую созданную электростанцию. Запасы топлива для таких электростанций практически неисчерпаемы – дейтерий и тритий легко добываются из морской воды. Килограмм этих изотопов может выделить столько же энергии, сколько 10 млн кг органического топлива.

Будущее не сможет существовать без развития термоядерного синтеза, человечеству необходима электроэнергия, а в современных условиях нам не хватит наших запасов энергии, при получении ее из атомных и электростанций.

Литература

1. Милантьев В.П., Темко С.В. Физика плазмы: кн. для внеклас. чтения. VIII – X кл. – 2-е изд., доп. – М.: Просвещение, 1983. 160 с., ил. – (Мир знаний).

2. Свирский М.С. Электронная теория вещества: учеб. пособие для студентов физ. - мат. фак. пед. ин-тов – М.: Просвещение, 1980. – 288с., ил.

3. Цитович В.Н. Электрические свойства плазмы. М., «Знание», 1973.

4. Техника молодежи // №2/1991

5. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике. – М.: Наука. – Гл. ред. физ.- мат. лит., 1989. – 576 с., ил.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ГОУ ВПО «Благовещенский государственный педагогический университет»

Физико-математический факультет

Кафедра общей физики

Курсовая работа

на тему: Проблемы термоядерного синтеза

по дисциплине: Физика

Исполнитель: В.С. Клетченко

Руководитель: В.А. Евдокимова

Благовещенск 2010


Введение

Термоядерные реакции и их энергетическая выгодность

Условия протекания термоядерных реакций

Осуществление термоядерных реакций в земных условиях

Основные проблемы, связанные с осуществлением термоядерных реакций

Осуществление управляемых термоядерных реакций в установках типа «ТОКАМАК»

Проект ИТЭР

Современные исследования плазмы и термоядерных реакций

Заключение

Литература


Введение

В настоящее время человечество не может представить свою жизнь без электроэнергии. Она везде. Но традиционные способы получения электроэнергии не дешевые: только представить возведение ГЭС или реактора АЭС, то сразу становится понятно почему. Ученые 20-го века, перед лицом энергетического кризиса, нашли способ получения электроэнергии из вещества, количество которого не ограничено. Термоядерные реакции протекают при распаде дейтерия и трития. В одном литре воды содержится дейтерия столько, что при термоядерном синтезе может выделиться столько энергии, сколько получается при сжигании 350 литров бензина. То есть можно сделать вывод, что вода - это неограниченный источник энергии.

Если бы получение энергии с помощью термоядерного синтеза было бы настолько просто, как при помощи ГЭС, то человечество никогда не испытывало бы кризиса в энергетике. Для получения энергии таким способом необходима температура, эквивалентная температуре в центре солнца. Где взять такую температуру, как дорого будут стоить установки, насколько выгодна такая добыча энергии и безопасна ли такая установка? На эти вопросы будет дан ответ в настоящей работе.

Цель работы: изучение свойств и проблем термоядерного синтеза.


Термоядерные реакции и их энергетическая выгодность

Термоядерная реакция - синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер.

Известно, что ядро атома водорода представляет собой протон р. Такого водорода очень много в природе – в воздухе и в воде. Кроме этого существуют более тяжелые изотопы водорода. Ядро одного из них содержит, кроме протона р, еще и нейтрон n. Называется этот изотоп дейтерием D. Ядро другого изотопа содержит, кроме протона р два нейтрона n и называется тритерием (тритием) Т. Термоядерные реакции наиболее эффективно происходят при сверхвысоких температурах порядка 10 7 – 10 9 К. При термоядерных реакциях выделяется очень большая энергия, превышающая энергию, которая выделяется при делении тяжелых ядер. В реакции синтеза выделяется энергия, которая в расчете на 1кг вещества значительно больше энергии, выделяющейся в реакции деления урана. (Здесь под выделяющейся энергией понимается кинетическая энергия частиц, образующихся в результате реакции.) Например, при реакции слияния ядер дейтерия 1 2 D и трития 1 3 Т в ядро гелия 2 4 Не:

1 2 D + 1 3 Т → 2 4 Не + 0 1 n,

Выделяется энергия, приблизительно равная 3,5 МэВ на один нуклон. В реакциях деления энергия на один нуклон составляет около 1 МэВ.

При синтезе ядра гелия из четырех протонов:

4 1 1 p→ 2 4 Не + 2 +1 1 е,

выделяется еще большая энергия, равная 6,7 МэВ на одну частицу. Энергетическая выгодность термоядерных реакций объясняется тем, что удельная энергия связи в ядре атома гелия значительно превышает удельную энергию связи ядер изотопов водорода. Таким образом, при удачном осуществлении управляемых термоядерных реакций человечество получит новый мощный источник энергии.

Условия протекания термоядерных реакций

Для слияния легких ядер необходимо преодолеть потенциальный барьер, обусловленный кулоновским отталкиванием протонов в одноименно положительно заряженных ядрах. Для слияния ядер водорода 1 2 Dих надо сблизить на расстояние r, равное приблизительно r ≈ 3 10 -15 м. Для этого нужно совершить работу, равную электростатической потенциальной энергии отталкивания П=е 2: (4πε 0 r) ≈ 0,1 МэВ. Ядра дейтона смогут преодолеть такой барьер, если при соударении их средняя кинетическая энергия 3 / 2 kT будет равна 0,1 МэВ. Это возможно при Т=2 10 9 К. Практически температура, необходимая для протекания термоядерных реакций снижается на два порядка и составляет 10 7 К.

Температура порядка 10 7 К характерна для центральной части Солнца. Спектральный анализ показал, что в веществе Солнца, как и многих других звезд, имеется до 80% водорода и около 20% гелия. Углерод, азот и кислород составляют не более 1% массы звезд. При огромной массе Солнца (≈ 2 10 27 кг) количество этих газов достаточно велико.

Термоядерные реакции происходят на Солнце и звездах и являются источником энергии, обеспечивающим их излучение. Ежесекундно Солнце излучает энергию3,8 10 26 Дж, что соответствует уменьшению его массы на 4,3 млн. тонн. Удельное выделение энергии Солнца, т.е. выделение энергии, приходящееся на единицу массы Солнца в одну секунду, равно 1,9 10 -4 Дж/с кг. Оно весьма мало и составляет около 10 -3 % от удельного выделения энергии в живом организме в процессе обмена веществ. Мощность излучения Солнца практически не изменилась за много миллиардов лет существования Солнечной системы.

Один из путей протекания термоядерных реакций на Солнце – углеродно-азотный цикл, в котором соединение ядер водорода в ядро гелия облегчается в присутствии ядер углерода 6 12 С играющих роль катализаторов. В начале цикла быстрый протон проникает в ядро атома углерода 6 12 С и образует неустойчивое ядро изотопа азота 7 13 N с излучением γ-кванта:

6 12 С + 1 1 p→ 7 13 N + γ.

С периодом полураспада 14 минут в ядре 7 13 N происходит превращение 1 1 p→ 0 1 n + +1 0 е + 0 0 ν е и образуется ядро изотопа 6 13 С:

7 13 N→ 6 13 С + +1 0 е + 0 0 ν е.

приблизительно через каждые 32 млн. лет ядро 7 14 N захватывает протон и превращается в ядро кислорода 8 15 О:

7 14 N+ 1 1 p→ 8 15 О + γ.

Неустойчивое ядро 8 15 О с периодом полураспада 3 минуты испускает позитрон и нейтрино и превращается в ядро 7 15 N:

8 15 О→ 7 15 N+ +1 0 е+ 0 0 ν е.

Цикл завершается реакцией поглощения ядром 7 15 N протона с распадом его на ядро углерода 6 12 С и α-частицу. Это происходит приблизительно через 100 тысяч лет:

7 15 N+ 1 1 p→ 6 12 С + 2 4 Не.


Новый цикл начинается вновь с поглощением углеродом 6 12 С протона, исходящего в среднем через 13 миллионов лет. Отдельные реакции цикла отдалены во времени промежутками, которые являются по земным масштабам времени непомерно большими. Однако цикл является замкнутым и происходит непрерывно. Поэтому различные реакции цикла происходят на Солнце одновременно, начавшись в разные моменты времени.

В результате этого цикла четыре протона сливаются в ядро гелия с появлением двух позитронов и γ-излучения. К этому нужно добавить излучение, возникающее при слиянии позитронов с электронами плазмы. При образовании одного гамматома гелия выделяется 700 тысяч кВт ч энергии. Это количество энергии компенсирует потери энергии Солнца на излучение. Расчеты показывают, что количества водорода, имеющегося на Солнце, хватит на поддержание термоядерных реакций и излучения Солнца на миллиарды лет.

Осуществление термоядерных реакций в земных условиях

Осуществление термоядерных реакций в земных условиях создаст огромные возможности для получения энергии. Например, при использовании дейтерия, содержащегося в одном литре воды, в реакции термоядерного синтеза выделится столько же энергии, сколько выделится при сгорании примерно 350 литров бензина. Но если термоядерная реакция будет протекать самопроизвольно, то произойдет колоссальный взрыв, так как выделяющаяся при этом энергия очень велика.

Условия, близкие к тем, что реализуются в недрах Солнца, были осуществлены в водородной бомбе. Там происходит самоподдерживающаяся термоядерная реакция взрывного характера. Взрывчатым веществом является смесь дейтерия 1 2 D с тритием 1 3 Т. Высокая температура, необходимая для протекания реакции, получается за счет взрыва обычной атомной бомбы, помещенной внутри термоядерной.


Основные проблемы, связанные с осуществлением термоядерных реакций

В термоядерном реакторе реакция синтеза должна происходить медленно, должна быть возможность управлять ею. Изучение реакций, происходящих в высокотемпературной дейтериевой плазме, является теоретической основой получения искусственных управляемых термоядерных реакций. Основной трудностью является поддержание условий, необходимых для получения самоподдерживающейся термоядерной реакции. Для такой реакции необходимо, чтобы скорость выделения энергии в системе, где происходит реакция, была не меньше, чем скорость отвода энергии от системы. При температурах порядка 10 8 К термоядерные реакции в дейтериевой плазме обладают заметной интенсивностью и сопровождаются выделением большой энергии. В единице объема плазмы при соединении ядер дейтерия выделяется мощность 3кВт/м 3 . При температурах порядка 10 6 К мощность составляет всего лишь 10 -17 Вт/м 3 .

Ю.Н. Днестровский — д.ф-м. наук, профессор, институт Ядерного Синтеза,
РНЦ «Курчатовский Институт», Москва, Россия
Материалы Международной конференции
«ПУТЬ В БУДУЩЕЕ – НАУКА, ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ, МЕЧТЫ И НАДЕЖДЫ»
26–28 ноября, 2007 Институт прикладной математики им. М.В. Келдыша РАН, Москва

Может ли управляемый термоядерный синтез (УТС) решить энергетическую проблему в долгосрочной перспективе? Какая часть пути по освоению УТС уже пройдена и сколько еще осталось пройти? Какие трудности ожидаются впереди? Эти проблемы обсуждаются в настоящей работе

1. Физические предпосылки УТС

Для производства энергии предполагается использовать ядерные реакции слияния легких ядер. Среди многих реакций такого типа наиболее легко осуществима реакция слияния ядер дейтерия и трития

Здесь через обозначено стабильное ядро гелия (альфа частица), через N – нейтрон, в скобках обозначена энергия частиц после реакции, . В этой реакции энергия, выделяющаяся на частицу с массой нейтрона, равна примерно 3.5 МэВ. Это примерно в 3-4 раза больше энергии на частицу, выделяющейся при делении урана.

Какие проблемы возникают при попытке реализации реакции (1) для получения энергии?

Главная проблема — трития нет в природе. Он радиоактивен, период полураспада у него приблизительно равен 12-ти годам, поэтому, если он и был когда-то в больших количествах на Земле, то от него давно ничего не осталось. Количество же трития, получаемого на Земле за счет естественной радиоактивности или за счет космического излучения ничтожно мало. Небольшое количество трития получается в реакциях, идущих внутри атомного уранового реактора. На одном из реакторов в Канаде организован сбор такого трития, но его наработка в реакторах очень медленна и производство оказывается слишком дорогим.

Таким образом, производство энергии в термоядерном реакторе на основе реакции (1) должно сопровождаться одновременной наработкой трития в этом же реакторе. Как это можно сделать мы будем обсуждать ниже.

Обе частицы, ядра дейтерия и трития, участвующие в реакции (1), имеют положительный заряд и потому отталкиваются друг от друга кулоновской силой. Для преодоления этой силы частицы должны иметь большую энергию. Зависимость скорости реакции (1), , от температуры тритиево-дейтериевой смеси показана на Рис.1 в двойном логарифмическом масштабе.

Видно, что с ростом температуры вероятность реакции (1) быстро возрастает. Приемлемая для реактора скорость реакции достигается при температуре T > 10 кэВ. Если учесть, что градусов, то температура в реакторе должна превышать 100 млн градусов. Все атомы вещества при такой температуре должны быть ионизованы, а само вещество в таком состоянии принято называть плазмой. Напомним, что по современным оценкам температура в центре Солнца достигает «лишь» 20 млн градусов.

Есть и другие реакции слияния, пригодные, в принципе, для выработки термоядерной энергии. Мы здесь отметим лишь две широко обсуждающиеся в литературе реакции

Здесь – изотоп ядра гелия с массой равной 3, p – протон (ядро водорода). Реакция (2) хороша тем, что для нее на Земле имеется сколько угодно топлива (дейтерия). Технология выделения дейтерия из морской воды отработана и относительно недорога. К сожалению, скорость этой реакции заметно меньше, чем скорость реакции (1) (см. Рис.1), поэтому для реализации реакции (2) требуется температура порядка 500 млн градусов.

Реакция (3) вызывает в настоящее время большой ажиотаж среди людей, занимающихся космическими полетами. Известно, что изотопа много на Луне, поэтому возможность его транспортировки на Землю обсуждается, как одна из приоритетных задач космонавтики. К сожалению, скорость этой реакции (Рис.1) также заметно меньше, скорости реакции (1) и требуемые температуры для осуществления этой реакции также находятся на уровне 500 млн градусов.

Для удержания плазмы с температурой порядка 100 – 500 млн градусов было предложено использовать магнитное поле (И.Е.Тамм, А.Д. Сахаров ). Наиболее перспективными сейчас представляются установки, в которых плазма имеет вид тора (бублика). Большой радиус этого тора мы обозначим через R , а малый через a . Для подавления неустойчивых движений плазмы помимо тороидального (продольного) магнитного поля B 0 требуется еще поперечное (полоидальное) поле. Существует два типа установок, в которых реализуется подобная магнитная конфигурация. В установках типа токамак полоидальное поле создается продольным током I , протекающим в плазме по направлению поля . В установках типа стелларатор полоидальное поле создается внешними винтовыми обмотками с током. Каждая из этих установок имеет свои преимущества и недостатки. В токамаке ток I должен быть согласован с полем . Стелларатор технически более сложен. Сейчас более продвинутыми являются установки типа токамак. Хотя имеются также большие, успешно работающие стеллараторы.

2. Условия на токамак-реактор

Мы укажем здесь лишь два необходимых условия, определяющих «окно» в пространстве параметров плазмы токамака реактора. Имеется, конечно, и множество других условий, уменьшающих это «окно», но они все-таки не так существенны.

1). Для того, чтобы реактор был коммерчески выгодным (не слишком большим), удельная мощность P выделяющейся энергии должна быть достаточно велика

Здесь n 1 и n 2 – плотности дейтерия и трития – энергия, выделяющаяся в одном акте реакции (1). Условие (4) ограничивает плотности n 1 и n 2 снизу.

2). Для того, чтобы плазма была устойчивой, давление плазмы должно быть заметно меньше давления продольного магнитного поля Для плазмы с разумной геометрией это условие имеет вид

При заданном магнитном поле это условие ограничивает плотность и температуру плазмы сверху. Если для осуществления реакции требуется увеличить температуру (например, от реакции (1) перейти к реакциям (2) или (3)), то для выполнения условия (5) нужно при этом увеличить магнитное поле .

Какое магнитное поле понадобится для реализации УТС? Рассмотрим сначала реакцию типа (1). Будем считать для простоты, что n 1 = n 2 = n /2 , где n – плотность плазмы. Тогда при температуре условие (1) дает

Воспользовавшись условием (5), найдем нижнюю границу для магнитного поля

В тороидальной геометрии продольное магнитное поле спадает, как 1/ r , по мере удаления от главной оси тора. Поле – это поле в центре меридионального сечения плазмы. На внутреннем обводе тора поле будет больше. При аспектном отношении

R / a ~ 3 магнитное поле внутри катушек тороидального поля оказывается в 2 раза больше . Таким образом, для выполнения условий (4-5) катушки продольного поля должны быть сделаны из материала, способного работать при магнитном поле порядка 13-14 Тесла.

Для стационарной работы реактора-токамака проводники в катушках должны быть выполнены из сверхпроводящего материала. Некоторые свойства современных сверхпроводников показаны на Рис.2.

В настоящее время в мире построено несколько токамаков со сверхпроводящими обмотками. Самый первый токамак такого типа (токамак Т-7), построенный в СССР в семидесятые годы, использовал в качестве сверхпроводника ниобий-титан (NbTi). Этот же материал использован в большом французском токамаке Tore Supra (середина 80-х годов). Из Рис.2 видно, что при температуре жидкого гелия магнитное поле в токамаке с таким сверхпроводником может достигать значений 4 Тесла. Для международного реактора-токамака ИТЭР решено использовать сверхпроводник ниобий-олово с большими возможностями, но и с более сложной технологией. Этот сверхпроводник используется в российской установке Т-15, запущенной в 1989 году. Из Рис.2 видно, что в ИТЭРе при температуре гелия порядка магнитное поле в плазме с большим запасом может достигать требуемых значений поля 6 Тесла.

Для реакций (2) и (3) условия (4)-(5) оказываются гораздо более жесткими. Для выполнения условия (4) температура плазмы в реакторе T должна быть в 4 раза больше, а плотность плазмы n в 2 раза больше, чем в реакторе, основанном на реакции (1). В результате давление плазмы повышается в 8 раз, а необходимая величина магнитного поля в 2.8 раза. Это означает, что на сверхпроводнике магнитное поле должно достигать значений 30 Тесла. Пока никто еще не работал с такими полями в большом объеме в стационарном режиме. Рис.2 показывает, что есть надежда создать в будущем сверхпроводник на такое поле. Однако, в настоящее время условия (4)-(5) для реакций типа (2)-(3) в установке токамак не могут быть реализованы.

3. Производство трития

В реакторе-токамаке камера с плазмой должна быть окружена толстым слоем материалов, защищающих обмотки тороидального поля от разрушения сверхпроводимости нейтронами. Такой слой, толщиной около метра, получил название бланкета. Здесь же в бланкете должен проводиться отвод тепла, выделяемого нейтронами при торможении. При этом часть нейтронов может быть использована для производства трития внутри бланкета. Наиболее подходящей ядерной реакцией для такого процесса является следующая реакция, идущая с выделением энергии

Здесь – изотоп лития с массой 6. Поскольку нейтрон – нейтральная частица, то кулоновский барьер отсутствует и реакция (8) может идти при энергии нейтрона, заметно меньшей 1 МэВ. Для эффективного производства трития число реакций типа (8) должно быть достаточно велико, а для этого должно быть большим число реагирующих нейтронов. Для увеличения числа нейтронов здесь же в бланкете должны быть расположены материалы, в которых идут реакции размножения нейтронов. Поскольку энергия первичных нейтронов, получающихся в реакции (1), велика (14 МэВ), а для реакции (8) требуются нейтроны с небольшой энергией, то, в принципе, число нейтронов в бланкете можно увеличить в 10-15 раз и, тем самым, замкнуть баланс по тритию: на каждый акт реакции (1) получить один или более актов реакции (8). Можно ли этот баланс реализовать практически? Ответ на этот вопрос требует детальных экспериментов и расчетов. От реактора ИТЭР не требуется, чтобы он обеспечил себя топливом, но на нем будут поставлены эксперименты для прояснения проблемы баланса трития.

Какое количество трития потребуется для работы реактора? Простые оценки показывают, что для реактора с тепловой мощностью 3 ГВт (электрической мощностью порядка 1 ГВт) потребуется 150 кг трития в год. Это примерно в раз меньше веса мазута, потребного для годовой работы тепловой электростанции такой же мощности.

В силу (8), первичным «топливом» для реактора является изотоп лития . Много ли его в природе? В природном литии присутствуют два изотопа

Видно, что содержание изотопа в природном литии достаточно высокое. Запасов лития в Земле при современной уровне потребления энергии хватит на несколько тысяч лет, а в океане – на десятки миллионов лет. Оценки, основанные на формулах (8)-(9), показывают, что природного лития надо добывать в 50-100 раз больше, чем требуется трития. Таким образом, для одного реактора с обсуждаемой мощностью потребуется 15 тонн природного лития в год. Это в 10 5 раз меньше, чем требуется мазутного топлива для тепловой электростанции. Хотя потребуется значительная энергия для разделения изотопов и в природном литии, дополнительная энергия, выделяющаяся в реакции (8), может компенсировать эти затраты.

4. Краткая история исследований по УТС

Исторически первым исследованием по УТС в нашей стране считается секретный Отчет И.Е.Тамма и А.Д.Сахарова, выпущенный в марте-апреле 1950 года. Он был опубликован позднее в 1958 году . Отчет содержал обзор основных идей по удержанию горячей плазмы магнитным полем в тороидальной установке и оценку размеров термоядерного реактора. Удивительно, но строящийся сейчас токамак ИТЭР близок по своим параметрам к предсказаниям исторического Отчета.

Эксперименты с горячей плазмой начались в СССР с начала пятидесятых годов. Сначала это были небольшие установки разных типов, прямые и тороидальные, но уже в середине десятилетия совместная работа экспериментаторов и теоретиков привела к установкам, получившим название «токамак». От года к году размеры и сложность установок увеличивались, и в 1962 году была запущена установка Т-3 с размерами R =100 см, а = 20 см и магнитным полем до четырех Тесла. Опыт, накопленный за полтора десятилетия, показал, что в установке с металлической камерой, хорошо очищенными стенками и высоким вакуумом (до мм рт. ст.) можно получить чистую, устойчивую плазму с высокой температурой электронов. Л.А.Арцимович доложил об этих результатах на Международной Конференции по Физике плазмы и УТС в 1968 году в Новосибирске. После этого направление токамаков было признано мировым научным сообществом и установки этого типа стали строиться во многих странах.

Токамаки следующего, второго, поколения (Т-10 в СССР и PLT в США) начали работать с плазмой в 1975 году. Они показали, что надежды, порожденные токамаками первого поколения, подтверждаются. И в токамаках с большими размерами можно работать с устойчивой и горячей плазмой. Однако, уже тогда стало ясно, что реактора малых размеров создать нельзя и нужно размеры плазмы увеличивать.

Проектирование токамаков третьего поколения заняло около пяти лет и в конце семидесятых годов началось их строительство. В следующем десятилетии они последовательно вводились в строй и к 1989 году работало 7 больших токамаков: TFTR и DIII — D в США, JET (самый большой) в объединенной Европе, ASDEX — U в Германии, TORE — SUPRA во Франции, JT 60- U в Японии и Т-15 в СССР. На этих установках были получены температура и плотность плазмы, необходимые для реактора. Конечно, пока они были получены порознь, отдельно для температуры и отдельно для плотности. Установки TFTR и JET допускали возможность работы с тритием, и на них впервые была получена заметная термоядерная мощность P DT (в соответствии с реакцией (1)), сравнимая с внешней мощностью, введенной в плазму P aux . Максимальная мощность P DT на установке JET в экспериментах 1997 года достигала значений 16 МВт при мощности P aux порядка 25 МВт. Разрез установки JET и внутренний вид камеры показан на Рис. 3 а,б. Здесь же для сравнения показаны размеры человека.

В самом начале 80-х годов началась совместная работа международной группы ученых (Россия, США, Европа, Япония) по проектированию токамака следующего (четвертого) поколения – реактора ИНТОР. На этой стадии ставилась задача просмотреть «узкие места» будущей установки без создания полного проекта. Однако, к середине 80-х годов стало ясно, что надо ставить более полную задачу, включая создание проекта. С подачи Е.П.Велихова, после длительных переговоров на уровне лидеров государств (М.С.Горбачева и Р.Рейгана) в 1988 году было подписано Соглашение и началась работа над проектом реактора-токамака ИТЭР. Работа проводилась в три этапа с перерывами и, в общей сложности, заняла 13 лет. Сама по себе дипломатическая история проекта ИТЭР драматична, не раз приводила к тупикам и заслуживает отдельного описания (см. например, книгу ). Формально проект был закончен в июле 2000-го года, но предстояло еще выбрать площадку для строительства и разработать Соглашение о строительстве и Устав ИТЭР. Все вместе это заняло почти 6 лет, и, наконец, в ноябре 2006-го года Соглашение о строительстве ИТЭР в Южной Франции было подписано. Ожидается, что само строительство займет около 10 лет. Таким образом, от момента начала переговоров до получения первой плазмы в термоядерном реакторе ИТЭР пройдет около 30 лет. Это уже сравнимо со временем активной жизни человека. Таковы реалии прогресса.

По своим линейным размерам ИТЭР примерно в два раза превосходит установку JET . По проекту магнитное поле в нем = 5.8Тесла, а ток I = 12-14 МА. Предполагается, что термоядерная мощность достигнет значения , введенной в плазму для нагрева, будет порядка 10.

5. Развитие средств нагрева плазмы.

Параллельно с ростом размеров токамака развивалась технология средств нагрева плазмы. Сейчас используется три различных метода нагрева:

  1. Омический нагрев плазмы протекающим по ней током.
  2. Нагрев пучками горячих нейтральных частиц дейтерия или трития.
  3. Нагрев электромагнитными волнами в разных диапазонах частот.

Омический нагрев плазмы в токамаке присутствует всегда, но он недостаточен для нагрева до термоядерных температур порядка 10 – 15 кэВ (100 – 150 млн. градусов). Дело в том, что с нагревом электронов быстро падает сопротивление плазмы (обратно пропорционально ), поэтому при фиксированном токе падает и вложенная мощность. В качестве примера укажем, что в установке JET током в 3-4 МА удается нагреть плазму только до ~ 2 – 3 кэВ. При этом сопротивление плазмы настолько мало, что ток в несколько миллионов ампер (МА) поддерживается напряжением 0.1 – 0.2 В.

Инжекторы пучков горячих нейтралов появились впервые на американской установке PLT в 1976-77 годах, и с тех пор прошли большой технологический путь развития. Сейчас типичный инжектор имеет пучок частиц с энергией 80 – 150 кэВ и мощностью до 3 – 5 МВт. На большой установке обычно устанавливается до 10 – 15 инжекторов разной мощности. Полная мощность пучков, захваченная плазмой, достигает 25 – 30 МВт. Это сравнимо с мощностью небольшой тепловой электростанции. На ИТЭРе предполагается установить инжекторы с энергией частиц до 1 МэВ и суммарной мощностью до 50 МВт. Таких пучков пока нет, но идут интенсивные разработки. В Соглашении по ИТЭРу ответственность за эти разработки взяла на себя Япония.

Сейчас считается, что нагрев плазмы электромагнитными волнами эффективен в трех диапазонах частот:

  • нагрев электронов на их циклотронной частоте f ~ 170 ГГц;
  • нагрев ионов и электронов на ионной циклотронной частоте f ~ 100 МГц;
  • нагрев на промежуточной (нижне-гибридной) частоте f ~ 5 ГГц.

Для последних двух диапазонов частот уже давно существуют мощные источники излучения, и главная проблема здесь заключается в правильном согласовании источников (антенн) с плазмой для снижения эффектов отражения волн. На ряде больших установок за счет высокого искусства экспериментаторов удалось ввести в плазму таким путем до 10 МВт мощности.

Для первого, наиболее высокочастотного диапазона проблема изначально заключалась в разработке мощных источников излучения с длиной волны l ~ 2 мм. Первопроходцем здесь оказался Институт Прикладной Физики в Нижнем Новгороде. За полвека целенаправленного труда удалось создать источники излучения (гиротроны) с мощностью до 1 МВт в стационарном режиме. Именно такие приборы будут установлены на ИТЭРе. В гиротронах технология доведена до степени искусства. Резонатор, в котором происходит возбуждение волн электронным пучком, имеет размеры порядка 20 см, а требуемая длина волны в 10 раз меньше. Поэтому требуется резонансно вложить до 95% мощности в одну и очень высокую пространственную гармонику, а во все остальные вместе – не более 5%. В одном из гиротронов для ИТЭРа в качестве такой выделенной гармоники используется гармоника с номерами (числом узлов) по радиусу = 25 и по углу = 10. Для вывода излучения из гиротрона в качестве окна используется поликристаллический алмазный диск толщиной 1.85 мм и диаметром 106 мм. Таким образом, для решения проблемы нагрева плазмы пришлось развить производство гигантских искусственных алмазов.

6. Диагностики

При температуре плазмы в 100 млн. градусов никакой измерительный прибор вставить внутрь плазмы нельзя. Он испарится, не успев передать разумной информации. Поэтому все измерения являются косвенными. Измеряются токи, поля и частицы вне плазмы, а затем, с помощью математических моделей, производится интерпретация зарегистрированных сигналов.

Что же измеряется на самом деле?

Прежде всего – это токи и напряжения в окружающих плазму контурах. С помощью локальных зондов измеряются электрические и магнитные поля вне плазмы. Число таких зондов может доходить до нескольких сотен. По этим измерениям, решая обратные задачи, можно восстановить форму плазмы, ее положение в камере и величину тока.

Для измерения температуры и плотности плазмы используются как активные, так и пассивные методы. Под активным понимается метод, когда какое-либо излучение (например, луч лазера или пучок нейтральных частиц) инжектируется в плазму, а измеряется рассеянное излучение, несущее информацию о параметрах плазмы. Одна из сложностей задачи заключается в том, что, как правило, рассеивается лишь малая доля инжектированного излучения. Так при использовании лазера для измерения температуры и плотности электронов рассеивается лишь 10 -10 от энергии лазерного импульса. При использовании пучка нейтралов для измерения температуры ионов измеряется интенсивность, форма и положение оптических линий, появляющихся при перезарядке ионов плазмы на нейтралах пучка. Интенсивность этих линий очень мала и для анализа их формы требуются спектрометры высокой чувствительности.

Под пассивными методами понимаются методы, измеряющие излучение, постоянно исходящее из плазмы. В этом случае измеряется электромагнитное излучение в различных диапазонах частот или потоки и спектры выходящих нейтральных частиц. Сюда относятся измерения жесткого и мягкого рентгена, ультрафиолета, измерения в оптическом, инфракрасном и радио диапазонах. Интересными бывают как измерения спектров, так и положения и формы отдельных линий. Число пространственных каналов в отдельных диагностиках достигает нескольких сотен. Частота регистрации сигналов доходит до нескольких МГц. Каждая уважающая себя установка имеет набор из 25-30 диагностик. На токамаке-реакторе ИТЭР только на начальной стадии предполагается иметь несколько десятков пассивных и активных диагностик.

7. Математические модели плазмы

Задачи математического моделирования плазмы можно грубо разделить на две группы. К первой группе относятся задачи интерпретации эксперимента. Они, как правило, некорректны и требуют разработки методов регуляризации. Приведем несколько примеров задач этой группы.

  1. Восстановление границы плазмы по магнитным (зондовым) измерениям полей вне плазмы. Эта задача приводит к интегральным уравнениям Фредгольма первого рода или к сильно вырожденным линейным алгебраическим системам.
  2. Обработка хордовых измерений. Здесь мы приходим к интегральным уравнениям первого рода смешанного типа Вольтерра-Фредгольма.
  3. Обработка измерений спектральных линий. Здесь требуется учет аппаратных функций, и мы опять приходим к интегральным уравнениям Фредгольма первого рода.
  4. Обработка зашумленных временных сигналов. Здесь используются различные спектральные разложения (Фурье, вэйв-лет), подсчеты корреляций различных порядков.
  5. Анализ спектров частиц. Здесь мы имеем дело с нелинейными интегральными уравнениями первого рода.

Следующие рисунки иллюстрируют некоторые из вышеприведенных примеров. На Рис.4 показано временное поведение сигналов мягкого рентгеновского излучения на установке MAST (Англия), измеренное по хордам коллимированными детекторами.

Установленная диагностика регистрирует свыше 100 таких сигналов. Резкие пики на кривых соответствуют быстрым внутренним движениям («срывам») плазмы. Двумерная структура таких движений может быть найдена с помощью томографической обработки большого числа сигналов.

Рис.5 показывает пространственное распределение давления электронов для двух импульсов той же установки MAST .

Измеряются спектры рассеянного излучения лазерного пучка в 300 точках по радиусу. Каждая точка на Рис.5 является результатом сложной обработки энергетического спектра фотонов, зарегистрированных детекторами. Поскольку рассеивается лишь малая часть энергии пучка лазера, то число фотонов в спектре невелико и восстановление температуры по ширине спектра оказывается некорректной задачей.

Ко второй группе относятся собственно задачи моделирования процессов, происходящих в плазме. Горячая плазма в токамаке обладает большим количеством характерных времен, крайние из которых различаются на 12 порядков. Поэтому напрасны ожидания, что могут быть созданы модели, содержащие «все» процессы в плазме. Приходится использовать модели, справедливые лишь в достаточно узкой полосе характерных времен.

К числу основных моделей относятся:

  • Гирокинетическое описание плазмы. Здесь неизвестной является функция распределения ионов, зависящая от шести переменных: трех пространственных координат в тороидальной геометрии, продольной и поперечной скорости и времени. Для описания электронов в таких моделях используются методы усреднения. Для решения этой задачи в ряде зарубежных центров разработаны гигантские коды. Расчет по ним требует большого времени на суперкомпьютерах. В России сейчас таких кодов нет, в остальном мире их насчитывается около десятка. В настоящее время гирокинетические коды описывают плазменные процессы в диапазоне времен 10 -5 -10 -2 сек. Сюда входят развитие неустойчивостей и поведение плазменной турбулентности. К сожалению, эти коды не дают пока разумной картины переноса в плазме. Сравнение результатов расчетов с экспериментом находится еще в начальной стадии.
  • Магнитогидродинамическое (МГД) описание плазмы. В этой области в ряде центров созданы коды для линеаризованных трехмерных моделей. Они используются для изучения устойчивости плазмы. Как правило, разыскиваются границы неустойчивостей в пространстве параметров и величины инкрементов. Параллельно развиваются нелинейные коды.

Заметим, что за последние 2 десятилетия отношение физиков к неустойчивостям плазмы заметно изменилось. В 50-е – 60-е годы неустойчивости плазмы открывались «почти каждый день». Но со временем стало ясно, что лишь некоторые из них приводят к частичному или полному разрушению плазмы, а остальные лишь увеличивают (или не увеличивают) перенос энергии и частиц. Самая опасная неустойчивость, приводящая к полному разрушению плазмы, называется «неустойчивостью срыва» или просто «срывом». Она нелинейна и развивается в том случае, когда более элементарные линейные МГД моды, связанные с отдельными резонансными поверхностями, пересекаются в пространстве и, тем самым, разрушают магнитные поверхности. Попытки описать процесс срыва привели к созданию нелинейных кодов. К сожалению, пока ни один из них не способен описать картину разрушения плазмы.

В плазме сегодняшних экспериментов, помимо неустойчивости срыва, считаются опасными небольшое число неустойчивостей. Здесь мы назовем лишь две из них. Это так называемая RWM мода, связанная с конечной проводимостью стенок камеры и затуханием в ней токов, стабилизирующих плазму, и NTM мода, связанная с образованием магнитных островов на резонансных магнитных поверхностях. К настоящему времени создано несколько трехмерных МГД кодов в тороидальной геометрии для изучения этих типов возмущений. Идут активные поиски методов подавления указанных неустойчивостей, как на ранней стадии, так и на стадии развитой турбулентности.

  • Описание переносов в плазме, теплопроводность и диффузия. Около сорока лет назад была создана классическая (основанная на парных соударениях частиц) теория переноса в тороидальной плазме. Эта теория была названа «неоклассической». Однако, уже в конце 60-х годов эксперименты показали, что перенос энергии и частиц в плазме гораздо больше неоклассического (на 1 – 2 порядка величины). На этом основании обычный перенос в экспериментальной плазме называется «аномальным».

Было предпринято много попыток описать аномальный перенос через развитие турбулентных ячеек в плазме. Обычный путь, принятый в последнем десятилетии во многих лабораториях мира, заключается в следующем. Предполагается, что первичной причиной, определяющей аномальный перенос, являются неустойчивости дрейфового типа, связанные с градиентами температуры ионов и электронов или с присутствием запертых частиц в тороидальной геометрии плазмы. Результаты расчетов по таким кодам приводят к следующей картине. Если градиенты температуры превышают некоторое критическое значение, то развивающаяся неустойчивость приводит к турбулизации плазмы и резкому увеличению потоков энергии. Предполагается, что эти потоки растут пропорционально расстоянию (в некоторой метрике) между экспериментальными и критическими градиентами. На этом пути в последнее десятилетие построено несколько транспортных моделей для описания переноса энергии в плазме токамака. Однако, попытки провести сравнение расчетов по этим моделям с экспериментом не всегда приводят к успеху. Для описания экспериментов приходится предполагать, что в разных режимах разрядов и в разных пространственных точках сечения плазмы главную роль в переносе играют разные неустойчивости. В результате предсказание не всегда оказывается надежным.

Дело осложняется еще и тем, что за последние четверть века открыто много признаков «самоорганизации» плазмы. Пример такого эффекта приведен на Рис.6 а,б.

Рис.6а показывает профили плотности плазмы n (r) для двух разрядов установки MAST с одинаковыми токами и магнитными полями, но с разной скоростью подачи газа дейтерия для поддержания плотности. Здесь r – расстояние до центральной оси тора. Видно, что профили плотности сильно различаются по своей форме. На Рис.6б для тех же импульсов показаны профили электронного давления , нормированные в точке – профиль температуры электронов. Видно, что «крылья» профилей давления хорошо совпадают. Из этого следует, что профили электронной температуры как бы «подстраиваются», чтобы сделать профили давления одинаковыми. Но это означает, что «подстраиваются» коэффициенты переноса, то есть они не являются функциями локальных параметров плазмы. Такая картина в целом и называется самоорганизацией. Несовпадение профилей давления в центральной части объясняется наличием периодических МГД колебаний в центральной зоне разряда с большей плотностью. Профили давления на крыльях совпадают, несмотря на эту нестационарность.

В наших работах предполагается, что эффект самоорганизации определяется одновременным действием многих неустойчивостей. Нельзя выделить среди них главную неустойчивость, поэтому описание переноса следует связывать с какими-то вариационными принципами, которые реализуются в плазме за счет диссипативных процессов. В качестве такого принципа предлагается использовать принцип минимума магнитной энергии, предложенный Кадомцевым . Этот принцип позволяет выделить некоторые специальные профили тока и давления, которые принято называть каноническими. В транспортных моделях они играют ту же роль, что и критические градиенты. Модели, построенные на этом пути, позволяют разумно описать экспериментальные профили температуры и плотности плазмы в разных режимах работы токамака .

8. Путь в будущее. Надежды и мечты.

За более чем полвека исследований горячей плазмы пройдена заметная доля пути к термоядерному реактору. В настоящее время наиболее перспективным представляется использование для этой цели установок типа токамак. Параллельно, хотя и с задержкой на 10-15 лет, развивается направление стеллараторов. Какая их этих установок окажется в конце концов более подходящей для коммерческого реактора, сейчас нельзя сказать. Это может быть решено лишь в будущем.

Прогресс в исследованиях по УТС, начиная с 60-х годов, показан на Рис.7 в двойном логарифмическом масштабе.

Разработана новую методика для эффективного замедления убегающих электронов путем введения «тяжелых» ионов, таких как неон или аргон, в реактор.

Функциональный термоядерный реактор - это все еще мечта, но она в конечном итоге может реализоваться благодаря многочисленным исследованиям и экспериментам с целью разблокировки неограниченного запаса чистой энергии. Проблемы с которыми ученые сталкиваются при получении ядерного синтеза, несомненно, серьезные и действительно сложные, однако все преодолимо. И кажется, что одна из главных проблем решена.

Ядерный синтез - это не придуманный человечеством процесс, а существующий в природе изначально, процесс питает наше Солнце. Глубоко внутри нашей родной звезды атомы водорода расположены вместе, чтобы сформировать гелий, который является толчковым для процесса. Термоядерный синтез высвобождает огромное количество энергии, но требует огромных затрат на создание чрезвычайно высокого давления и температуры, что сложно поддается контролируемому воспроизведению на Земле.

В прошлом году исследователи из Массачусетского технологического института приблизили нас к синтезу, поместив плазму в условия с тем самым, подходящим, давлением, теперь, два исследователя из Университета Чалмерса открыли еще один кусочек головоломки.

Одна из проблем, с которой инженеры столкнулись, - это убегающие электроны. Эти электроны, с чрезвычайно высокой энергией, могут внезапно и неожиданно, разогнаться до очень высокой скорости, что может разрушить стену реактора без предупреждения.

Докторанты Линнея Хешлов и Оле Эмбероз разработали новую методику для эффективного замедления этих убегающих электронов путем введения «тяжелых» ионов, таких как неон или аргон, в реактор. В итоге, электроны, соударяясь с высоким зарядом в ядра этих ионов, замедляются и становятся гораздо более управляемыми.

«Когда мы сможем эффективно замедлять убегающие электроны, мы подойдем на один шаг ближе к функциональному термоядерному реактору», - говорит Линнеа Хешлов.

Исследователи создали модель, которая может эффективно прогнозировать энергию электронов и поведение. Используя Математическое моделирование плазмы физики теперь могут эффективно контролировать скорость убегания электронов, не прерывая процесс синтеза.

«Многие считают, что это будет работать, но легче съездить на Марс, чем добиться слияния», - говорит Линнеа Хешлов: «Можно сказать, что мы пытаемся собрать здесь звезды на земле, и это может занять некоторое время. Он берет невероятно высокие температуры, горячее, чем центр солнца, для нас, чтобы успешно добиться слияния здесь, на земле. Поэтому я надеюсь, что все это дело времени».

по материалам newatlas.com, перевод

mob_info