Une bombe aérienne thermonucléaire 602. "Tsar Bomba": comment l'URSS a montré au monde "la mère de Kuzka"

La Tsar Bomba est le surnom de la bombe à hydrogène AN602, testée en Union soviétique en 1961. Cette bombe était la plus puissante jamais explosée. Sa puissance était telle que l'éclair de l'explosion était visible à 1 000 km et le champignon nucléaire s'élevait à près de 70 km.

La Tsar Bomba était une bombe à hydrogène. Il a été créé dans le laboratoire de Kurchatov. La puissance de la bombe était telle qu’elle aurait suffi à détruire 3 800 Hiroshima.

Rappelons l'histoire de sa création...

Au début de « l’ère atomique », les États-Unis et Union soviétique sont entrés dans la course non seulement par le nombre de bombes atomiques, mais aussi par leur puissance.

l'URSS, qui a acquis armes atomiques plus tard qu'un concurrent, a cherché à niveler la situation en créant des appareils plus avancés et plus puissants.

Le développement d'un dispositif thermonucléaire nommé « Ivan » a été lancé au milieu des années 1950 par un groupe de physiciens dirigé par l'académicien Kurchatov. Le groupe impliqué dans ce projet comprenait Andrei Sakharov, Viktor Adamsky, Yuri Babaev, Yuri Trunov et Yuri Smirnov.

Pendant travail de recherche les scientifiques ont également tenté de déterminer les limites de la puissance maximale d'un engin explosif thermonucléaire.

La possibilité théorique d'obtenir de l'énergie par fusion thermonucléaireétait connue avant même la Seconde Guerre mondiale, mais c'est la guerre et la course aux armements qui a suivi qui ont posé la question de la création dispositif technique pour créer pratiquement cette réaction. On sait qu'en Allemagne, en 1944, des travaux ont été menés pour initier la fusion thermonucléaire en comprimant du combustible nucléaire à l'aide de charges d'explosifs conventionnels - mais ils n'ont pas abouti, car il n'a pas été possible d'obtenir les températures et pressions requises. Les États-Unis et l'URSS développaient le thermo armes nucléairesà partir des années 40, testant presque simultanément les premiers dispositifs thermonucléaires au début des années 50. En 1952, les États-Unis ont fait exploser une charge d'une puissance de 10,4 mégatonnes sur l'atoll d'Eniwetak (qui est 450 fois plus puissante que la bombe larguée sur Nagasaki), et en 1953, l'URSS a testé un appareil d'une puissance de 400 kilotonnes.

La conception des premiers dispositifs thermonucléaires était mal adaptée à une utilisation réelle au combat. Par exemple, le dispositif testé par les États-Unis en 1952 était une structure au sol de la hauteur d’un immeuble de deux étages et pesant plus de 80 tonnes. Le combustible thermonucléaire liquide y était stocké à l'aide d'une immense unité de réfrigération. Par conséquent, à l’avenir, la production en série d’armes thermonucléaires a été réalisée en utilisant un combustible solide - le deutéride de lithium-6. En 1954, les États-Unis ont testé un dispositif basé sur celui-ci sur l'atoll de Bikini, et en 1955, une nouvelle bombe thermonucléaire soviétique a été testée sur le site d'essai de Semipalatinsk. En 1957, des tests d'une bombe à hydrogène ont été réalisés en Grande-Bretagne.

Les recherches en matière de conception ont duré plusieurs années et la dernière étape du développement du « produit 602 » a eu lieu en 1961 et a duré 112 jours.

La bombe AN602 avait une conception à trois étages : la charge nucléaire du premier étage (la contribution calculée à la puissance d'explosion est de 1,5 mégatonnes) a déclenché une réaction thermonucléaire dans le deuxième étage (la contribution à la puissance d'explosion - 50 mégatonnes), et elle, à son tour, a lancé la soi-disant « réaction nucléaire de Jekyll-Hyde » (fission nucléaire dans des blocs d'uranium 238 sous l'influence de neutrons rapides générés à la suite de la réaction de fusion thermonucléaire) dans la troisième étape (50 mégatonnes supplémentaires de puissance) , de sorte que la puissance totale calculée de l'AN602 était de 101,5 mégatonnes.

Cependant, l'option initiale a été rejetée, car sous cette forme, l'explosion de la bombe aurait provoqué une contamination radioactive extrêmement puissante (qui, cependant, selon les calculs, serait encore sérieusement inférieure à celle provoquée par des appareils américains beaucoup moins puissants).
En conséquence, il a été décidé de ne pas utiliser la « réaction Jekyll-Hyde » dans le troisième étage de la bombe et de remplacer les composants à l’uranium par leur équivalent au plomb. Cela a réduit de près de moitié la puissance totale estimée de l'explosion (à 51,5 mégatonnes).

Une autre limitation pour les développeurs était les capacités des avions. La première version d'une bombe pesant 40 tonnes a été rejetée par les concepteurs d'avions du Tupolev Design Bureau - l'avion porteur ne serait pas en mesure de livrer une telle cargaison à la cible.

En conséquence, les parties sont parvenues à un compromis: les scientifiques nucléaires ont réduit de moitié le poids de la bombe et les concepteurs aéronautiques préparaient une modification spéciale du bombardier Tu-95 - le Tu-95V.

Il s'est avéré qu'il ne serait en aucun cas possible de placer une charge dans la soute à bombes, le Tu-95V a donc dû transporter l'AN602 jusqu'à la cible sur une élingue externe spéciale.

En fait, l'avion porteur était prêt en 1959, mais les physiciens nucléaires avaient pour instruction de ne pas accélérer les travaux sur la bombe - c'est justement à ce moment-là qu'il y avait des signes d'une diminution des tensions dans les relations internationales dans le monde.

Mais au début de 1961, la situation s'aggrave à nouveau et le projet est relancé.

Le poids final de la bombe, y compris le système de parachute, était de 26,5 tonnes. Le produit s'est avéré avoir plusieurs noms à la fois - " Grand Ivan", " Tsar Bomba " et " La Mère de Kuzka ". Ce dernier s’en est tenu à la bombe après le discours du dirigeant soviétique Nikita Khrouchtchev aux Américains, dans lequel il avait promis de leur montrer « la mère de Kouzka ».

En 1961, Khrouchtchev a ouvertement parlé aux diplomates étrangers du fait que l'Union soviétique envisageait de tester dans un avenir proche une charge thermonucléaire surpuissante. Le 17 octobre 1961, le dirigeant soviétique annonça les tests à venir dans un rapport au XXIIe Congrès du Parti.

Le site de test a été déterminé comme étant le site de test Sukhoi Nos à Novaya Zemlya. Les préparatifs de l'explosion furent achevés fin octobre 1961.

L'avion porteur Tu-95B était basé à l'aérodrome de Vaenga. Ici, dans une salle spéciale, les derniers préparatifs des tests ont été effectués.

Le matin du 30 octobre 1961, l'équipage du pilote Andrei Durnovtsev reçut l'ordre de se rendre sur le site d'essai et de larguer une bombe.

Décollant de l'aérodrome de Vaenga, le Tu-95B a atteint son point de conception deux heures plus tard. La bombe a été larguée depuis un système de parachute depuis une hauteur de 10 500 mètres, après quoi les pilotes ont immédiatement commencé à éloigner la voiture de la zone dangereuse.

A 11h33, heure de Moscou, une explosion a eu lieu à une altitude de 4 km au-dessus de la cible.

La puissance de l'explosion a largement dépassé celle calculée (51,5 mégatonnes) et variait de 57 à 58,6 mégatonnes en équivalent TNT.

Principe de fonctionnement:

L'action d'une bombe à hydrogène repose sur l'utilisation de l'énergie libérée lors de la réaction de fusion thermonucléaire des noyaux légers. C'est cette réaction qui se produit dans les profondeurs des étoiles, où, sous l'influence de températures ultra élevées et d'une pression énorme, des noyaux d'hydrogène entrent en collision et fusionnent en noyaux d'hélium plus lourds. Au cours de la réaction, une partie de la masse des noyaux d'hydrogène est transformée en un grand nombre deénergie - grâce à cela, les étoiles libèrent constamment d'énormes quantités d'énergie. Les scientifiques ont copié cette réaction en utilisant des isotopes de l'hydrogène - deutérium et tritium, ce qui lui a donné le nom de « bombe à hydrogène ». Initialement, des isotopes liquides de l'hydrogène étaient utilisés pour produire des charges, puis du deutéride de lithium-6, solide, un composé de deutérium et un isotope du lithium.

Le deutéride de lithium-6 est le composant principal de la bombe à hydrogène, le combustible thermonucléaire. Il stocke déjà du deutérium et l'isotope du lithium sert de matière première pour la formation du tritium. Pour démarrer une réaction de fusion thermonucléaire, il faut créer haute température et la pression, ainsi que pour isoler le tritium du lithium-6. Ces conditions sont prévues comme suit.

La coque du conteneur pour combustible thermonucléaire est constituée d'uranium 238 et de plastique, et une charge nucléaire conventionnelle d'une puissance de plusieurs kilotonnes est placée à côté du conteneur - cela s'appelle un déclencheur ou une charge initiatrice d'une bombe à hydrogène. Lors de l'explosion de la charge d'initiation au plutonium sous l'influence d'un puissant rayonnement de rayons X, la coque du conteneur se transforme en plasma, se comprimant des milliers de fois, ce qui crée la haute pression et l'énorme température nécessaires. Dans le même temps, les neutrons émis par le plutonium interagissent avec le lithium-6 pour former du tritium. Les noyaux de deutérium et de tritium interagissent sous l'influence de températures et de pressions ultra élevées, ce qui conduit à une explosion thermonucléaire.

Si vous fabriquez plusieurs couches de deutérure d'uranium 238 et de lithium 6, chacune d'elles ajoutera sa propre puissance à l'explosion d'une bombe - c'est-à-dire qu'une telle "bouffée" vous permettra d'augmenter la puissance de l'explosion de manière presque illimitée. . Grâce à cela, une bombe à hydrogène peut être fabriquée avec presque n'importe quelle puissance, et elle sera beaucoup moins chère qu'une bombe nucléaire conventionnelle de même puissance.

Les témoins du test disent qu'ils n'ont jamais rien vu de tel de leur vie. Le champignon nucléaire de l'explosion s'est élevé à une hauteur de 67 kilomètres, le rayonnement lumineux pourrait potentiellement provoquer des brûlures au troisième degré à une distance allant jusqu'à 100 kilomètres.

Les observateurs ont rapporté qu'à l'épicentre de l'explosion, les rochers avaient pris une forme étonnamment plate et que le sol s'était transformé en une sorte de terrain de parade militaire. La destruction complète a été réalisée sur une superficie égale au territoire de Paris.

L'ionisation de l'atmosphère a provoqué des interférences radio même à des centaines de kilomètres du site d'essai pendant environ 40 minutes. Le manque de communication radio a convaincu les scientifiques que les tests se sont déroulés aussi bien que possible. L'onde de choc résultant de l'explosion du Tsar Bomba a fait trois tours Terre. L'onde sonore générée par l'explosion a atteint l'île Dikson à une distance d'environ 800 kilomètres.

Malgré les nuages ​​épais, des témoins ont vu l'explosion même à des milliers de kilomètres et ont pu la décrire.

La contamination radioactive de l'explosion s'est avérée minime, comme l'avaient prévu les développeurs - plus de 97 % de la puissance de l'explosion était fournie par la réaction de fusion thermonucléaire, qui n'a pratiquement pas créé de contamination radioactive.

Cela a permis aux scientifiques de commencer à étudier les résultats des tests sur le terrain expérimental dans les deux heures suivant l'explosion.

L'explosion du Tsar Bomba a vraiment marqué le monde entier. Elle s’est avérée quatre fois plus puissante que la bombe américaine la plus puissante.

Il existait une possibilité théorique de créer des charges encore plus puissantes, mais il a été décidé d'abandonner la mise en œuvre de tels projets.

Curieusement, les principaux sceptiques se sont avérés être les militaires. De leur point de vue, le sens pratique armes similaires je n'avais pas. Comment ordonnez-vous qu’il soit livré au « repaire de l’ennemi » ? L'URSS possédait déjà des missiles, mais ils n'étaient pas en mesure de se rendre en Amérique avec une telle charge.

Les bombardiers stratégiques ne pouvaient pas non plus se rendre aux États-Unis avec de tels « bagages ». De plus, ils sont devenus des cibles faciles pour les systèmes de défense aérienne.

Les scientifiques atomiques se sont montrés beaucoup plus enthousiastes. Des plans ont été avancés pour placer plusieurs super-bombes d'une capacité de 200 à 500 mégatonnes au large des côtes des États-Unis, dont l'explosion provoquerait un tsunami géant qui emporterait littéralement l'Amérique.

L'académicien Andrei Sakharov, futur militant des droits de l'homme et lauréat prix Nobel paix, proposer un autre plan. « Le porte-avions pourrait être une grosse torpille lancée depuis un sous-marin. J'ai imaginé qu'il était possible de développer un statoréacteur à réaction nucléaire à eau et à vapeur pour une telle torpille. La cible d'une attaque à une distance de plusieurs centaines de kilomètres devrait être les ports ennemis. Une guerre sur mer est perdue si les ports sont détruits, nous l'assurent les marins. Le corps d'une telle torpille peut être très résistant ; elle n'aura pas peur des mines et des filets de barrage. Bien entendu, la destruction des ports - à la fois par l'explosion en surface d'une torpille chargée de 100 mégatonnes qui a « sauté » hors de l'eau et par une explosion sous-marine - est inévitablement associée à de très nombreuses pertes », a écrit le scientifique dans ses mémoires.

Sakharov a fait part de son idée au vice-amiral Piotr Fomine. Un marin expérimenté, qui dirigeait le « département atomique » auprès du commandant en chef de la marine de l’URSS, a été horrifié par le plan du scientifique, qualifiant le projet de « cannibale ». Selon Sakharov, il avait honte et n'est jamais revenu sur cette idée.

Les scientifiques et le personnel militaire ont reçu de généreuses récompenses pour les tests réussis du Tsar Bomba, mais l'idée même de charges thermonucléaires super puissantes a commencé à appartenir au passé.

Les concepteurs d’armes nucléaires se sont concentrés sur des choses moins spectaculaires, mais bien plus efficaces.

Et l’explosion de la « Tsar Bomba » reste à ce jour la plus puissante de celles jamais produites par l’humanité.

Tsar Bomba en chiffres :

  • Poids: 27 tonnes
  • Longueur: 8 mètres
  • Diamètre: 2 mètres
  • Pouvoir: 55 mégatonnes en équivalent TNT
  • Hauteur du champignon nucléaire : 67 kilomètres
  • Diamètre de la base du champignon : 40 kilomètres
  • Diamètre de la boule de feu : 4.6 kilomètres
  • Distance à laquelle l'explosion a provoqué des brûlures cutanées : 100 kilomètres
  • Distance de visibilité de l'explosion : 1 000 kilomètres
  • La quantité de TNT nécessaire pour égaler la puissance du Tsar Bomba : un cube géant de TNT avec un côté 312 mètres (hauteur de la Tour Eiffel)

sources

http://www.aif.ru/society/history/1371856

http://www.aif.ru/dontknows/infographics/kak_deystvuet_vodorodnaya_bomba_i_kakovy_posledstviya_vzryva_infografika

http://llloll.ru/tsar-bomb

Et un peu plus sur l'ATOM non pacifique : par exemple, et ici. Et il y avait aussi une telle chose qu'il y avait aussi L'article original est sur le site InfoGlaz.rf Lien vers l'article à partir duquel cette copie a été réalisée -

Tsar Bomba est le nom de la bombe à hydrogène AN602, testée en Union soviétique en 1961. Cette bombe était la plus puissante jamais explosée. Sa puissance était telle que l'éclair de l'explosion était visible à 1 000 km et le champignon nucléaire s'élevait à près de 70 km.

La Tsar Bomba était une bombe à hydrogène. Il a été créé dans le laboratoire de Kurchatov. La puissance de la bombe était telle qu’elle aurait suffi à détruire 3 800 Hiroshima.

Rappelons l'histoire de sa création.

Au début de « l’ère atomique », les États-Unis et l’Union soviétique se sont lancés dans une course non seulement pour le nombre de bombes atomiques, mais aussi pour leur puissance.

L'URSS, qui a acquis l'arme atomique plus tard que son concurrent, a cherché à niveler la situation en créant des dispositifs plus avancés et plus puissants.

Le développement d'un dispositif thermonucléaire nommé « Ivan » a été lancé au milieu des années 1950 par un groupe de physiciens dirigé par l'académicien Kurchatov. Le groupe impliqué dans ce projet comprenait Andrei Sakharov, Viktor Adamsky, Yuri Babaev, Yuri Trunov et Yuri Smirnov.

Au cours des recherches, les scientifiques ont également tenté de déterminer les limites de la puissance maximale d'un engin explosif thermonucléaire.

La possibilité théorique d'obtenir de l'énergie par fusion thermonucléaire était connue avant la Seconde Guerre mondiale, mais c'est la guerre et la course aux armements qui a suivi qui ont posé la question de la création d'un dispositif technique pour la création pratique de cette réaction. On sait qu'en Allemagne, en 1944, des travaux ont été menés pour initier la fusion thermonucléaire en comprimant du combustible nucléaire à l'aide de charges d'explosifs conventionnels - mais ils n'ont pas abouti, car il n'a pas été possible d'obtenir les températures et pressions requises. Les États-Unis et l’URSS développent des armes thermonucléaires depuis les années 40 et testent presque simultanément les premiers dispositifs thermonucléaires au début des années 50. En 1952, les États-Unis ont fait exploser une charge d'une puissance de 10,4 mégatonnes sur l'atoll d'Eniwetak (qui est 450 fois plus puissante que la bombe larguée sur Nagasaki), et en 1953, l'URSS a testé un appareil d'une puissance de 400 kilotonnes.

La conception des premiers dispositifs thermonucléaires était mal adaptée à une utilisation réelle au combat. Par exemple, le dispositif testé par les États-Unis en 1952 était une structure au sol de la hauteur d’un immeuble de deux étages et pesant plus de 80 tonnes. Le combustible thermonucléaire liquide y était stocké à l'aide d'une immense unité de réfrigération. Par conséquent, à l’avenir, la production en série d’armes thermonucléaires a été réalisée en utilisant un combustible solide - le deutéride de lithium-6. En 1954, les États-Unis ont testé un dispositif basé sur celui-ci sur l'atoll de Bikini, et en 1955, une nouvelle bombe thermonucléaire soviétique a été testée sur le site d'essai de Semipalatinsk. En 1957, des tests d'une bombe à hydrogène ont été réalisés en Grande-Bretagne.

Les recherches en matière de conception ont duré plusieurs années et la dernière étape du développement du « produit 602 » a eu lieu en 1961 et a duré 112 jours.

La bombe AN602 avait une conception à trois étages : la charge nucléaire du premier étage (la contribution calculée à la puissance d'explosion est de 1,5 mégatonnes) a déclenché une réaction thermonucléaire dans le deuxième étage (la contribution à la puissance d'explosion - 50 mégatonnes), et elle, à son tour, a lancé la soi-disant « réaction nucléaire de Jekyll-Hyde » (fission nucléaire dans des blocs d'uranium 238 sous l'influence de neutrons rapides générés à la suite de la réaction de fusion thermonucléaire) dans la troisième étape (50 mégatonnes supplémentaires de puissance) , de sorte que la puissance totale calculée de l'AN602 était de 101,5 mégatonnes.

Cependant, l'option initiale a été rejetée, car sous cette forme, elle aurait provoqué une contamination radioactive extrêmement puissante (qui, selon les calculs, aurait néanmoins été sérieusement inférieure à celle provoquée par des appareils américains beaucoup moins puissants).
En conséquence, il a été décidé de ne pas utiliser la « réaction Jekyll-Hyde » dans le troisième étage de la bombe et de remplacer les composants à l’uranium par leur équivalent au plomb. Cela a réduit de près de moitié la puissance totale estimée de l'explosion (à 51,5 mégatonnes).

Une autre limitation pour les développeurs était les capacités des avions. La première version d'une bombe pesant 40 tonnes a été rejetée par les concepteurs d'avions du Tupolev Design Bureau - l'avion porteur ne serait pas en mesure de livrer une telle cargaison à la cible.

En conséquence, les parties sont parvenues à un compromis: les scientifiques nucléaires ont réduit de moitié le poids de la bombe et les concepteurs aéronautiques préparaient une modification spéciale du bombardier Tu-95 - le Tu-95V.

Il s'est avéré qu'il ne serait en aucun cas possible de placer une charge dans la soute à bombes, le Tu-95V a donc dû transporter l'AN602 jusqu'à la cible sur une élingue externe spéciale.

En fait, l'avion porteur était prêt en 1959, mais les physiciens nucléaires avaient pour instruction de ne pas accélérer les travaux sur la bombe - c'est justement à ce moment-là qu'il y avait des signes d'une diminution des tensions dans les relations internationales dans le monde.

Mais au début de 1961, la situation s'aggrave à nouveau et le projet est relancé.

Le poids final de la bombe, y compris le système de parachute, était de 26,5 tonnes. Le produit avait plusieurs noms à la fois - "Big Ivan", "Tsar Bomba" et "Kuzka's Mother". Ce dernier s’en est tenu à la bombe après le discours du dirigeant soviétique Nikita Khrouchtchev aux Américains, dans lequel il avait promis de leur montrer « la mère de Kouzka ».

En 1961, Khrouchtchev a ouvertement parlé aux diplomates étrangers du fait que l'Union soviétique envisageait de tester dans un avenir proche une charge thermonucléaire surpuissante. Le 17 octobre 1961, le dirigeant soviétique annonça les tests à venir dans un rapport au XXIIe Congrès du Parti.

Le site de test a été déterminé comme étant le site de test Sukhoi Nos à Novaya Zemlya. Les préparatifs de l'explosion furent achevés fin octobre 1961.

L'avion porteur Tu-95B était basé à l'aérodrome de Vaenga. Ici, dans une salle spéciale, les derniers préparatifs des tests ont été effectués.

Le matin du 30 octobre 1961, l'équipage du pilote Andrei Durnovtsev reçut l'ordre de se rendre sur le site d'essai et de larguer une bombe.

Décollant de l'aérodrome de Vaenga, le Tu-95B a atteint son point de conception deux heures plus tard. La bombe a été larguée depuis un système de parachute depuis une hauteur de 10 500 mètres, après quoi les pilotes ont immédiatement commencé à éloigner la voiture de la zone dangereuse.

A 11h33, heure de Moscou, une explosion a eu lieu à une altitude de 4 km au-dessus de la cible.

La puissance de l'explosion a largement dépassé celle calculée (51,5 mégatonnes) et variait de 57 à 58,6 mégatonnes en équivalent TNT.

Principe de fonctionnement:

L'action d'une bombe à hydrogène repose sur l'utilisation de l'énergie libérée lors de la réaction de fusion thermonucléaire des noyaux légers. C'est cette réaction qui se produit dans les profondeurs des étoiles, où, sous l'influence de températures ultra élevées et d'une pression énorme, des noyaux d'hydrogène entrent en collision et fusionnent en noyaux d'hélium plus lourds. Au cours de la réaction, une partie de la masse des noyaux d'hydrogène est convertie en une grande quantité d'énergie. Grâce à cela, les étoiles libèrent constamment d'énormes quantités d'énergie. Les scientifiques ont copié cette réaction en utilisant des isotopes de l'hydrogène - deutérium et tritium, ce qui lui a donné le nom de « bombe à hydrogène ». Initialement, des isotopes liquides de l'hydrogène étaient utilisés pour produire des charges, et plus tard, du deutéride de lithium-6, un composé solide de deutérium et un isotope du lithium, a été utilisé.

Le deutéride de lithium-6 est le composant principal de la bombe à hydrogène, le combustible thermonucléaire. Il stocke déjà du deutérium et l'isotope du lithium sert de matière première pour la formation du tritium. Pour démarrer une réaction de fusion thermonucléaire, il est nécessaire de créer des températures et des pressions élevées, ainsi que de séparer le tritium du lithium-6. Ces conditions sont prévues comme suit.

La coque du conteneur pour combustible thermonucléaire est constituée d'uranium 238 et de plastique, et une charge nucléaire conventionnelle d'une puissance de plusieurs kilotonnes est placée à côté du conteneur - cela s'appelle un déclencheur ou une charge initiatrice d'une bombe à hydrogène. Lors de l'explosion de la charge d'initiation au plutonium sous l'influence d'un puissant rayonnement de rayons X, la coque du conteneur se transforme en plasma, se comprimant des milliers de fois, ce qui crée la haute pression et l'énorme température nécessaires. Dans le même temps, les neutrons émis par le plutonium interagissent avec le lithium-6 pour former du tritium. Les noyaux de deutérium et de tritium interagissent sous l'influence de températures et de pressions ultra élevées, ce qui conduit à une explosion thermonucléaire.

Si vous fabriquez plusieurs couches de deutérure d'uranium 238 et de lithium 6, chacune d'elles ajoutera sa propre puissance à l'explosion d'une bombe - c'est-à-dire qu'une telle "bouffée" vous permettra d'augmenter la puissance de l'explosion de manière presque illimitée. . Grâce à cela, une bombe à hydrogène peut être fabriquée avec presque n'importe quelle puissance, et elle sera beaucoup moins chère qu'une bombe nucléaire conventionnelle de même puissance.

Les témoins du test disent qu'ils n'ont jamais rien vu de tel de leur vie. Le champignon nucléaire de l'explosion s'est élevé à une hauteur de 67 kilomètres, le rayonnement lumineux pourrait potentiellement provoquer des brûlures au troisième degré à une distance allant jusqu'à 100 kilomètres.

Les observateurs ont rapporté qu'à l'épicentre de l'explosion, les rochers avaient pris une forme étonnamment plate et que le sol s'était transformé en une sorte de terrain de parade militaire. La destruction complète a été réalisée sur une superficie égale au territoire de Paris.

L'ionisation de l'atmosphère a provoqué des interférences radio même à des centaines de kilomètres du site d'essai pendant environ 40 minutes. Le manque de communication radio a convaincu les scientifiques que les tests se sont déroulés aussi bien que possible. L'onde de choc résultant de l'explosion de la Tsar Bomba a fait trois fois le tour du globe. L'onde sonore générée par l'explosion a atteint l'île Dikson à une distance d'environ 800 kilomètres.

Malgré les nuages ​​épais, des témoins ont vu l'explosion même à des milliers de kilomètres et ont pu la décrire.

La contamination radioactive de l'explosion s'est avérée minime, comme l'avaient prévu les développeurs - plus de 97 % de la puissance de l'explosion était fournie par la réaction de fusion thermonucléaire, qui n'a pratiquement pas créé de contamination radioactive.

Cela a permis aux scientifiques de commencer à étudier les résultats des tests sur le terrain expérimental dans les deux heures suivant l'explosion.

L'explosion du Tsar Bomba a vraiment marqué le monde entier. Elle s’est avérée quatre fois plus puissante que la bombe américaine la plus puissante.

Il existait une possibilité théorique de créer des charges encore plus puissantes, mais il a été décidé d'abandonner la mise en œuvre de tels projets.

Curieusement, les principaux sceptiques se sont avérés être les militaires. De leur point de vue, de telles armes n’avaient aucune signification pratique. Comment ordonnez-vous qu’il soit livré au « repaire de l’ennemi » ? L'URSS possédait déjà des missiles, mais ils n'étaient pas en mesure de se rendre en Amérique avec une telle charge.

Les bombardiers stratégiques ne pouvaient pas non plus se rendre aux États-Unis avec de tels « bagages ». De plus, ils sont devenus des cibles faciles pour les systèmes de défense aérienne.

Les scientifiques atomiques se sont montrés beaucoup plus enthousiastes. Des plans ont été avancés pour placer plusieurs super-bombes d'une capacité de 200 à 500 mégatonnes au large des côtes des États-Unis, dont l'explosion provoquerait un tsunami géant qui emporterait littéralement l'Amérique.

L'académicien Andreï Sakharov, futur militant des droits de l'homme et lauréat du prix Nobel de la paix, a proposé un plan différent. « Le porte-avions pourrait être une grosse torpille lancée depuis un sous-marin. J'ai imaginé qu'il était possible de développer un statoréacteur à réaction nucléaire à eau et à vapeur pour une telle torpille. La cible d'une attaque à une distance de plusieurs centaines de kilomètres devrait être les ports ennemis. Une guerre sur mer est perdue si les ports sont détruits, nous l'assurent les marins. Le corps d'une telle torpille peut être très résistant ; elle n'aura pas peur des mines et des filets de barrage. Bien entendu, la destruction des ports - à la fois par l'explosion en surface d'une torpille chargée de 100 mégatonnes qui a « sauté » hors de l'eau et par une explosion sous-marine - est inévitablement associée à de très nombreuses pertes », a écrit le scientifique dans ses mémoires.

Sakharov a fait part de son idée au vice-amiral Piotr Fomine. Un marin expérimenté, qui dirigeait le « département atomique » auprès du commandant en chef de la marine de l’URSS, a été horrifié par le plan du scientifique, qualifiant le projet de « cannibale ». Selon Sakharov, il avait honte et n'est jamais revenu sur cette idée.

Les scientifiques et le personnel militaire ont reçu de généreuses récompenses pour les tests réussis du Tsar Bomba, mais l'idée même de charges thermonucléaires super puissantes a commencé à appartenir au passé.

Les concepteurs d’armes nucléaires se sont concentrés sur des choses moins spectaculaires, mais bien plus efficaces.

Et l’explosion de la « Tsar Bomba » reste à ce jour la plus puissante de celles jamais produites par l’humanité.

Tsar Bomba en chiffres :

Poids : 27 tonnes
Longueur : 8 mètres
Diamètre : 2 mètres
Rendement : 55 mégatonnes de TNT
Hauteur du champignon : 67 km
Diamètre de la base du champignon : 40 km
Diamètre de la boule de feu : 4,6 km
Distance à laquelle l'explosion a provoqué des brûlures cutanées : 100 km
Distance de visibilité de l'explosion : 1000 km
La quantité de TNT nécessaire pour égaler la puissance de la Bombe Tsar : un cube géant de TNT de 312 mètres de côté (la hauteur de la Tour Eiffel).

Le 30 octobre 1961, l'engin explosif le plus puissant de l'histoire de l'humanité a explosé sur Novaya Zemlya.

Plus puissant, encore plus puissant...

Au début de « l’ère atomique », les États-Unis et l’Union soviétique se sont lancés dans une course non seulement pour le nombre de bombes atomiques, mais aussi pour leur puissance.

L'URSS, qui a acquis l'arme atomique plus tard que son concurrent, a cherché à niveler la situation en créant des dispositifs plus avancés et plus puissants.

Le développement d'un dispositif thermonucléaire nommé « Ivan » a été lancé au milieu des années 1950 par un groupe de physiciens dirigé par l'académicien Kurchatov. L'équipe impliquée dans ce projet comprenait Andreï Sakharov,Victor Adamski, Youri Babaïev, Youri Trounov Et Youri Smirnov.

Au cours des recherches, les scientifiques ont également tenté de déterminer les limites de la puissance maximale d'un engin explosif thermonucléaire.

Les recherches en matière de conception ont duré plusieurs années et la dernière étape du développement du « produit 602 » a eu lieu en 1961 et a duré 112 jours.

La bombe AN602 avait une conception à trois étages : la charge nucléaire du premier étage (la contribution calculée à la puissance d'explosion était de 1,5 mégatonnes) déclenchait une réaction thermonucléaire dans le deuxième étage (la contribution à la puissance d'explosion était de 50 mégatonnes), et elle, à son tour, a lancé la soi-disant « réaction nucléaire de Jekyll-Hyde » (fission nucléaire dans des blocs d'uranium 238 sous l'influence de neutrons rapides générés à la suite de la réaction de fusion thermonucléaire) dans la troisième étape (50 mégatonnes supplémentaires de puissance) , de sorte que la puissance totale calculée de l'AN602 était de 101,5 mégatonnes.

Cependant, l'option initiale a été rejetée, car sous cette forme, l'explosion de la bombe aurait provoqué une contamination radioactive extrêmement puissante (qui, cependant, selon les calculs, serait encore sérieusement inférieure à celle provoquée par des appareils américains beaucoup moins puissants).

"Produit 602"

En conséquence, il a été décidé de ne pas utiliser la « réaction Jekyll-Hyde » dans le troisième étage de la bombe et de remplacer les composants à l’uranium par leur équivalent au plomb. Cela a réduit de près de moitié la puissance totale estimée de l'explosion (à 51,5 mégatonnes).

Une autre limitation pour les développeurs était les capacités des avions. La première version d'une bombe pesant 40 tonnes a été rejetée par les concepteurs d'avions du Tupolev Design Bureau - l'avion porteur ne serait pas en mesure de livrer une telle cargaison à la cible.

En conséquence, les parties sont parvenues à un compromis: les scientifiques nucléaires ont réduit de moitié le poids de la bombe et les concepteurs aéronautiques préparaient une modification spéciale du bombardier Tu-95 - le Tu-95V.

Il s'est avéré qu'il ne serait en aucun cas possible de placer une charge dans la soute à bombes, le Tu-95V a donc dû transporter l'AN602 jusqu'à la cible sur une élingue externe spéciale.

En fait, l'avion porteur était prêt en 1959, mais les physiciens nucléaires avaient pour instruction de ne pas accélérer les travaux sur la bombe - c'est justement à ce moment-là qu'il y avait des signes d'une diminution des tensions dans les relations internationales dans le monde.

Mais au début de 1961, la situation s'aggrave à nouveau et le projet est relancé.

C’est l’heure de « Mère Kuzma »

Le poids final de la bombe, y compris le système de parachute, était de 26,5 tonnes. Le produit avait plusieurs noms à la fois - "Big Ivan", "Tsar Bomba" et "Kuzka's Mother". Ce dernier s'en est tenu à la bombe après le discours du dirigeant soviétique Nikita Khrouchtchev devant les Américains, dans lequel il promettait de leur montrer « la mère de Kuzka ».

En 1961, Khrouchtchev a ouvertement parlé aux diplomates étrangers du fait que l'Union soviétique envisageait de tester dans un avenir proche une charge thermonucléaire surpuissante. Le 17 octobre 1961, le dirigeant soviétique annonça les tests à venir dans un rapport au XXIIe Congrès du Parti.

Le site de test a été déterminé comme étant le site de test Sukhoi Nos à Novaya Zemlya. Les préparatifs de l'explosion furent achevés fin octobre 1961.

L'avion porteur Tu-95B était basé à l'aérodrome de Vaenga. Ici, dans une salle spéciale, les derniers préparatifs des tests ont été effectués.

Le matin du 30 octobre 1961, l'équipage pilote Andrei Durnovtsev a reçu l'ordre de voler vers la zone du site d'essai et de larguer une bombe.

Décollant de l'aérodrome de Vaenga, le Tu-95B a atteint son point de conception deux heures plus tard. La bombe a été larguée depuis un système de parachute depuis une hauteur de 10 500 mètres, après quoi les pilotes ont immédiatement commencé à éloigner la voiture de la zone dangereuse.

A 11h33, heure de Moscou, une explosion a eu lieu à une altitude de 4 km au-dessus de la cible.

Il y avait Paris - et il n'y a pas de Paris

La puissance de l'explosion a largement dépassé celle calculée (51,5 mégatonnes) et variait de 57 à 58,6 mégatonnes en équivalent TNT.

Les témoins du test disent qu'ils n'ont jamais rien vu de tel de leur vie. Le champignon nucléaire de l'explosion s'est élevé à une hauteur de 67 kilomètres, le rayonnement lumineux pourrait potentiellement provoquer des brûlures au troisième degré à une distance allant jusqu'à 100 kilomètres.

Les observateurs ont rapporté qu'à l'épicentre de l'explosion, les rochers avaient pris une forme étonnamment plate et que le sol s'était transformé en une sorte de terrain de parade militaire. La destruction complète a été réalisée sur une superficie égale au territoire de Paris.

L'ionisation de l'atmosphère a provoqué des interférences radio même à des centaines de kilomètres du site d'essai pendant environ 40 minutes. Le manque de communication radio a convaincu les scientifiques que les tests se sont déroulés aussi bien que possible. L'onde de choc résultant de l'explosion de la Tsar Bomba a fait trois fois le tour du globe. L'onde sonore générée par l'explosion a atteint l'île Dikson à une distance d'environ 800 kilomètres.

Malgré les nuages ​​épais, des témoins ont vu l'explosion même à des milliers de kilomètres et ont pu la décrire.

La contamination radioactive de l'explosion s'est avérée minime, comme l'avaient prévu les développeurs - plus de 97 % de la puissance de l'explosion était fournie par la réaction de fusion thermonucléaire, qui n'a pratiquement pas créé de contamination radioactive.

Cela a permis aux scientifiques de commencer à étudier les résultats des tests sur le terrain expérimental dans les deux heures suivant l'explosion.

Le projet « cannibale » de Sakharov

L'explosion du Tsar Bomba a vraiment marqué le monde entier. Elle s’est avérée quatre fois plus puissante que la bombe américaine la plus puissante.

Il existait une possibilité théorique de créer des charges encore plus puissantes, mais il a été décidé d'abandonner la mise en œuvre de tels projets.

Curieusement, les principaux sceptiques se sont avérés être les militaires. De leur point de vue, de telles armes n’avaient aucune signification pratique. Comment ordonnez-vous qu’il soit livré au « repaire de l’ennemi » ? L'URSS possédait déjà des missiles, mais ils n'étaient pas en mesure de se rendre en Amérique avec une telle charge.

Les bombardiers stratégiques ne pouvaient pas non plus se rendre aux États-Unis avec de tels « bagages ». De plus, ils sont devenus des cibles faciles pour les systèmes de défense aérienne.

Les scientifiques atomiques se sont montrés beaucoup plus enthousiastes. Des plans ont été avancés pour placer plusieurs super-bombes d'une capacité de 200 à 500 mégatonnes au large des côtes des États-Unis, dont l'explosion était censée provoquer un tsunami géant qui emporterait l'Amérique au sens littéral du terme.

L'académicien Andreï Sakharov, futur militant des droits de l'homme et lauréat du prix Nobel de la paix, a proposé un plan différent. « Le porte-avions pourrait être une grosse torpille lancée depuis un sous-marin. J'ai imaginé qu'il était possible de développer un statoréacteur à réaction nucléaire à eau et à vapeur pour une telle torpille. La cible d'une attaque à une distance de plusieurs centaines de kilomètres devrait être les ports ennemis. Une guerre sur mer est perdue si les ports sont détruits, nous l'assurent les marins. Le corps d'une telle torpille peut être très résistant ; elle n'aura pas peur des mines et des filets de barrage. Bien entendu, la destruction des ports - à la fois par l'explosion en surface d'une torpille chargée de 100 mégatonnes qui a « sauté » hors de l'eau et par une explosion sous-marine - est inévitablement associée à de très nombreuses pertes », a écrit le scientifique dans ses mémoires.

Sakharov a parlé de son idée Vice-amiral Piotr Fomine. Un marin expérimenté, qui dirigeait le « département atomique » auprès du commandant en chef de la marine de l’URSS, a été horrifié par le plan du scientifique, qualifiant le projet de « cannibale ». Selon Sakharov, il avait honte et n'est jamais revenu sur cette idée.

Les scientifiques et le personnel militaire ont reçu de généreuses récompenses pour les tests réussis du Tsar Bomba, mais l'idée même de charges thermonucléaires super puissantes a commencé à appartenir au passé.

Les concepteurs d’armes nucléaires se sont concentrés sur des choses moins spectaculaires, mais bien plus efficaces.

Et l’explosion de la « Tsar Bomba » reste à ce jour la plus puissante de celles jamais produites par l’humanité.


30 octobre 1961 au terrain d'entraînement Nouvelle terre La bombe thermonucléaire soviétique AN606 d'une puissance de 57 mégatonnes a été testée avec succès. Cette puissance était 10 fois supérieure à la puissance totale de toutes les munitions utilisées pendant la Seconde Guerre mondiale. L'AN606 est l'arme la plus destructrice de toute l'histoire de l'humanité.

Lieu

Les essais nucléaires en Union soviétique ont commencé en 1949 sur le site d'essais de Semipalatinsk, situé au Kazakhstan. Sa superficie était de 18 500 mètres carrés. km. Il a été retiré des lieux de résidence permanente des personnes. Mais pas tellement que l'on puisse en expérimenter le plus arme puissante. Par conséquent, des charges nucléaires faibles et faibles ont explosé dans la steppe kazakhe. puissance moyenne. Ils étaient nécessaires au débogage technologie nucléaire, étudiant l'influence facteurs dommageables pour les équipements et les structures. C'est-à-dire qu'il s'agissait avant tout de tests scientifiques et techniques.

Mais dans des conditions de compétition militaire, des tests étaient également nécessaires, dans lesquels l'accent était mis sur leur composante politique, sur la démonstration du pouvoir écrasant de la bombe soviétique.

Il y avait aussi le terrain d'entraînement Totsky dans la région d'Orenbourg. Mais c'était plus petit que Semipalatinsk. Et en plus, il était situé à proximité encore plus dangereuse des villes et des villages.

En 1954, ils trouvèrent un endroit où il était possible de tester des armes nucléaires de très haute puissance.

Cet endroit est devenu l'archipel de Novaya Zemlya. Il répondait pleinement aux exigences du site d'essai où la super-bombe devait être testée. Était aussi loin que possible des grands colonies et des communications et, après sa fermeture, aurait dû avoir un impact minimal sur les activités économiques ultérieures de la région. Il était également nécessaire de mener une étude sur les effets d'une explosion nucléaire sur les navires et les sous-marins.

Les îles de Novaya Zemlya répondaient le mieux à ces exigences et à d’autres. Leur superficie était plus de quatre fois supérieure à celle du terrain d'essai de Semipalatinsk et s'élevait à 85 000 mètres carrés. km., ce qui est approximativement égal à la superficie des Pays-Bas.

Le problème de la population susceptible de souffrir des explosions a été résolu radicalement : 298 indigènes Nenets ont été expulsés de l'archipel, leur offrant un logement à Arkhangelsk, ainsi que dans le village d'Amderma et sur l'île de Kolguev. Dans le même temps, les migrants travaillaient et les personnes âgées recevaient une pension, malgré le fait qu'elles n'avaient aucune expérience professionnelle.

Ils ont été remplacés par des constructeurs.

Le site d'essais nucléaires de Novaya Zemlya n'est en aucun cas un champ vide sur lequel les bombardiers larguent leur cargaison mortelle, mais tout un ensemble d'ouvrages d'art et de services administratifs et économiques complexes. Il s'agit notamment des sciences expérimentales et Service d'ingénierie, services d'approvisionnement en énergie et en eau, régiment d'aviation de chasse, détachement d'aviation de transport, division des navires et des navires but spécial, équipe de secours d'urgence, centre de communication, unités Logistique et soutien, Des espaces de vie.

Trois sites de test ont été créés sur le site de test : Black Lip, Matochkin Shar et Sukhoi Nos.

À l'été 1954, 10 bataillons de construction sont livrés dans l'archipel et commencent la construction du premier site, Black Lip. Les constructeurs ont passé l'hiver arctique dans des tentes en toile, préparant Guba à une explosion sous-marine prévue pour septembre 1955 - la première en URSS.

Produit

Le développement du Tsar Bomba, désigné AN602, a commencé simultanément avec la construction du site d'essai de Novaya Zemlya - en 1955. Et cela s'est terminé par la création d'une bombe prête à être testée en septembre 1961, soit un mois avant l'explosion.

Le développement a commencé au NII-1011 du ministère de la Construction de machines moyennes (aujourd'hui l'Institut panrusse de recherche scientifique en physique technique, VNIITF), situé à Snezhinsk, dans la région de Tcheliabinsk. En fait, l'institut a été fondé le 5 mai 1955, principalement pour mettre en œuvre un projet thermonucléaire grandiose. Et ce n’est qu’alors que ses activités se sont étendues à la création de 70 pour cent de toutes les bombes nucléaires, missiles et torpilles soviétiques.

NII-1011 était dirigé par le directeur scientifique de l'institut, Kirill Ivanovich Shchelkin, membre correspondant de l'Académie des sciences de l'URSS. Shchelkin, avec un groupe d'éminents scientifiques nucléaires, a participé à la création et aux tests du premier bombe atomique RDS-1. C'est lui qui, en 1949, fut le dernier à quitter la tour avec une charge installée à l'intérieur, à sceller l'entrée et à appuyer sur le bouton « Démarrer ».

Les travaux de création de la bombe AN602, auxquels ont participé les principaux physiciens du pays, dont Kurchatov et Sakharov, se sont déroulés sans complications particulières. Mais la puissance unique de la bombe a nécessité d’énormes quantités de calculs et de travaux de conception. Et également mener des expériences avec des charges plus petites sur le site de test - d'abord à Semipalatinsk, puis à Novaya Zemlya.

Le projet initial prévoyait la création d'une bombe qui briserait certainement les fenêtres, sinon à Moscou, mais certainement à Mourmansk et à Arkhangelsk, et même dans le nord de la Finlande. Puisqu’une capacité dépassant les 100 mégatonnes était prévue.

Initialement, le schéma de fonctionnement de la bombe était à trois liaisons. Tout d’abord, une charge de plutonium d’une puissance de 1,5 Mt a été déclenchée. Il a déclenché une réaction de fusion thermonucléaire dont la puissance était de 50 Mt. Les neutrons rapides libérés à la suite de la réaction thermonucléaire ont déclenché la réaction de fission nucléaire dans les blocs d'uranium 238. La contribution de cette réaction à la « cause commune » a été de 50 Mt.

Ce projet a conduit à des conséquences extrêmement haut niveau contamination radioactive sur un vaste territoire. Et il n’était pas nécessaire de parler de « l’impact minime de la décharge sur l’activité économique ultérieure de la région après sa fermeture ». Par conséquent, il a été décidé d'abandonner la phase finale - la fission de l'uranium. Mais en même temps, la puissance réelle de la bombe résultante s’est avérée légèrement supérieure à celle basée sur les calculs. Au lieu de 51,5 Mt, le 30 octobre 1961, 57 Mt ont explosé sur Novaya Zemlya.

La création de la bombe AN602 n'a pas été achevée à Snezhinsk, mais dans le célèbre KB-11, situé à Arzamas-16. La révision finale a duré 112 jours.

Le résultat fut un monstre pesant 26 500 kg, 800 cm de long et un diamètre maximum de 210 cm.

Les dimensions et le poids de la bombe avaient déjà été déterminés en 1955. Pour le faire décoller, il a fallu moderniser considérablement le plus gros bombardier de l'époque, le Tu-95. Et cela non plus n'était pas une tâche facile, puisque le Tu-95 standard ne pouvait pas soulever le Tsar Bomba dans les airs ; avec un avion pesant 84 tonnes, il ne pouvait transporter que 11 tonnes de charge de combat. La part du carburant était de 90 tonnes. De plus, la bombe ne rentrait pas dans la soute à bombes. Les réservoirs de carburant du fuselage ont donc dû être retirés. Et remplacez également les porte-bombes à faisceau par des plus puissants.

Les travaux de modernisation du bombardier, baptisé Tu-95 V et fabriqué en un seul exemplaire, se sont déroulés de 1956 à 1958. Les essais en vol se sont poursuivis pendant une autre année, au cours de laquelle la technique consistant à larguer une maquette de bombe de même poids et de mêmes dimensions a été testée. En 1959, l'avion a été reconnu comme répondant pleinement à ses exigences.

Résultat

Le résultat principal, comme prévu, était politique et a dépassé toutes les attentes. L'explosion d'une force jusqu'alors inconnue a fait une très forte impression sur les dirigeants pays de l'Ouest. Il nous a obligés à examiner plus sérieusement les capacités du complexe militaro-industriel soviétique et à réduire quelque peu nos ambitions militaristes.

Les événements du 30 octobre 1961 se sont déroulés comme suit. Tôt le matin, deux bombardiers ont décollé d'un aérodrome éloigné - un Tu-95 B avec le produit AN602 à bord et un Tu-16 avec du matériel de recherche et du matériel cinématographique et photographique.

À 11 h 32, le commandant du Tu-95, le major Andrei Egorovich Durnovtsev, a largué une bombe à une altitude de 10 500 mètres. Le major est revenu à l'aérodrome en tant que lieutenant-colonel et héros de l'Union soviétique.

La bombe, descendue en parachute jusqu'à un niveau de 3 700 mètres, a explosé. A ce moment-là, les avions avaient réussi à s'éloigner de 39 kilomètres de l'épicentre.

Chefs de test - Ministre de l'ingénierie moyenne E.P. Slavsky et commandant en chef forces de missiles Maréchal K.S. Moskalenko - au moment de l'explosion, ils se trouvaient à bord de l'Il-14 à une distance de plus de 500 kilomètres. Malgré le temps nuageux, ils ont vu un éclair lumineux. Au même moment, l’avion était clairement secoué par l’onde de choc. Le ministre et le maréchal envoyèrent immédiatement un télégramme à Khrouchtchev.

L'un des groupes de chercheurs, à une distance de 270 kilomètres du point de l'explosion, a non seulement vu un éclair lumineux à travers des lunettes noires de protection, mais a même ressenti l'impact de l'impulsion lumineuse. Dans un village abandonné, à 400 kilomètres de l'épicentre, les maisons en bois ont été détruites et celles en pierre ont perdu leur toit, leurs fenêtres et leurs portes.

Le champignon issu de l'explosion a atteint une hauteur de 68 kilomètres. Dans le même temps, l’onde de choc, réfléchie depuis le sol, a empêché la boule de plasma de descendre vers le sol, ce qui aurait tout incinéré dans un vaste espace.

Les différents effets étaient monstrueux. L'onde sismique a fait trois fois le tour du globe. Rayonnement lumineuxétait capable de provoquer des brûlures au troisième degré à une distance de 100 km. Le rugissement de l'explosion a été entendu dans un rayon de 800 km. En raison des effets ionisants, des interférences radio ont été observées en Europe pendant plus d'une heure. Pour la même raison, la communication avec deux bombardiers a été perdue pendant 30 minutes.

Le test s’est avéré étonnamment propre. Le rayonnement radioactif dans un rayon de trois kilomètres autour de l'épicentre deux heures après l'explosion n'était que de 1 milliroentgen par heure.

Le Tu-95B, bien qu'il se trouvait à 39 kilomètres de l'épicentre, a été plongé par l'onde de choc. Et le pilote n'a pu reprendre le contrôle de l'avion qu'après avoir perdu 800 mètres d'altitude. L'ensemble du bombardier, y compris les hélices, a été peint avec une peinture blanche réfléchissante. Mais après inspection, il s’est avéré que la peinture s’était décolorée par fragments. Et certains éléments structurels ont même fondu et se sont déformés.

En conclusion, il convient de noter que le boîtier AN602 pourrait également accueillir un remplissage de 100 mégatonnes.

Il y a plus de 55 ans, le 30 octobre 1961, se produisait l'un des événements les plus marquants Guerre froide. Sur le site d'essai situé à Novaya Zemlya, l'Union soviétique a testé le dispositif thermonucléaire le plus puissant de l'histoire de l'humanité : une bombe à hydrogène d'une puissance de 58 mégatonnes de TNT. Officiellement, cette munition s'appelait AN602 (« produit 602 »), mais elle est entrée dans les annales historiques sous son nom non officiel - « Tsar Bomba ».

Cette bombe a un autre nom : « La mère de Kuzka ». Il est né après le célèbre discours du premier secrétaire du Comité central du PCUS et président du Conseil des ministres de l'URSS Khrouchtchev, au cours duquel il a promis de montrer aux États-Unis «la mère de Kuzka» et a tapoté sa chaussure sur le podium.

Les meilleurs physiciens soviétiques ont travaillé à la création du « produit 602 » : Sakharov, Trutnev, Adamsky, Babaev, Smirnov. L'académicien Kurchatov a dirigé ce projet ; les travaux sur la création d'une bombe ont commencé en 1954.

Le Tsar Bomba soviétique a été largué depuis un bombardier stratégique Tu-95, spécialement converti pour cette mission. L'explosion s'est produite à une altitude de 3,7 mille mètres. Les sismographes du monde entier ont enregistré de fortes vibrations et l'onde de choc a fait trois fois le tour du globe. L'explosion du Tsar Bomba a sérieusement effrayé l'Occident et a montré qu'il valait mieux ne pas embêter l'Union soviétique. Un puissant effet de propagande a été obtenu et les capacités des armes nucléaires soviétiques ont été clairement démontrées à un ennemi potentiel.

Mais le plus important était autre chose : les tests du Tsar Bomba ont permis de tester les calculs théoriques des scientifiques, et il a été prouvé que la puissance des munitions thermonucléaires est pratiquement illimitée.

Et cela, d’ailleurs, était vrai. Après les tests réussis, Khrouchtchev a plaisanté en disant qu'ils voulaient faire exploser 100 mégatonnes, mais qu'ils avaient peur de briser les vitres de Moscou. En effet, ils avaient initialement prévu de faire exploser une charge d'une centaine de mégatonnes, mais ils n'ont ensuite pas voulu en appliquer trop. gros dégâts polygone.

L'histoire de la création du Tsar Bomba

Depuis le milieu des années 50, des travaux ont commencé aux États-Unis et en URSS pour créer une arme nucléaire de deuxième génération - une bombe thermonucléaire. En novembre 1952, les États-Unis ont fait exploser le premier engin de ce type et huit mois plus tard, l'Union soviétique a procédé à des tests similaires. Dans le même temps, la bombe thermonucléaire soviétique était beaucoup plus avancée que son homologue américaine ; elle pouvait facilement être placée dans la soute à bombes d'un avion et utilisée dans la pratique. Les armes thermonucléaires étaient parfaitement adaptées à la mise en œuvre du concept soviétique de frappes uniques mais mortelles contre l'ennemi, car en théorie, la puissance des charges thermonucléaires est illimitée.

Au début des années 60, l’URSS a commencé à développer d’énormes (voire monstrueuses) charges nucléaires. Il était notamment prévu de créer des missiles dotés de têtes thermonucléaires pesant 40 et 75 tonnes. La puissance d’explosion d’une ogive de quarante tonnes était censée être de 150 mégatonnes. Dans le même temps, des travaux étaient en cours pour créer des munitions pour avions lourds. Cependant, le développement de tels «monstres» nécessitait des tests pratiques au cours desquels les techniques de bombardement seraient testées, les dommages causés par les explosions seraient évalués et, plus important encore, les calculs théoriques des physiciens seraient testés.

De manière générale, il convient de noter qu'avant l'avènement de missiles balistiques intercontinentaux fiables, le problème de la livraison d'ogives nucléaires était très aigu en URSS. Il y avait un projet pour une énorme torpille automotrice dotée d'une puissante charge thermonucléaire (environ une centaine de mégatonnes), qui devait exploser au large des côtes américaines. Un sous-marin spécial a été conçu pour lancer cette torpille. Selon les développeurs, l'explosion était censée provoquer un puissant tsunami et inonder les villes américaines les plus importantes situées sur la côte. Le projet était dirigé par l'académicien Sakharov, mais pour des raisons techniques, il n'a jamais été mis en œuvre.

Initialement, le développement d'une bombe nucléaire super puissante a été réalisé par NII-1011 (Chelyabinsk-70, actuellement RFNC-VNIITF). À ce stade, les munitions s'appelaient RN-202, mais en 1958, le projet a été clôturé par décision des plus hauts dirigeants du pays. Il existe une légende selon laquelle "La Mère de Kuzka" a été développée par des scientifiques soviétiques en un temps record - seulement 112 jours. Cela ne correspond pas vraiment. Bien qu'en effet, la dernière étape de création des munitions, qui a eu lieu dans le KB-11, n'a duré que 112 jours. Mais il n'est pas tout à fait exact de dire que le Tsar Bomba est simplement un RN-202 renommé et modifié. En fait, des améliorations significatives ont été apportées à la conception des munitions.

Initialement, la puissance de l'AN602 était censée être supérieure à 100 mégatonnes et sa conception comportait trois étapes. Mais en raison d'une contamination radioactive importante du site de l'explosion, ils ont décidé d'abandonner le troisième étage, qui réduisait la puissance des munitions de près de moitié (à 50 mégatonnes).

Un autre problème sérieux que les développeurs du projet Tsar Bomba ont dû résoudre était la préparation d'un avion porteur pour cette charge nucléaire unique et non standard, puisque le Tu-95 de série n'était pas adapté à cette mission. Cette question a été soulevée en 1954 lors d'une conversation entre deux académiciens - Kurchatov et Tupolev.

Après que les dessins de la bombe thermonucléaire aient été réalisés, il s'est avéré que le placement des munitions nécessitait de sérieuses modifications dans la soute à bombes de l'avion. Les réservoirs du fuselage ont été retirés du véhicule et pour la suspension de l'AN602, un nouveau support de poutre a été installé sur l'avion avec une capacité de charge beaucoup plus grande et trois verrous de bombardier au lieu d'un. Nouveau bombardier a reçu l'indice "B".

Pour assurer la sécurité de l'équipage de l'avion, le Tsar Bomba était équipé de trois parachutes à la fois : d'échappement, de freinage et principal. Ils ont ralenti la chute de la bombe, permettant à l'avion de voler à une distance de sécurité après avoir été largué.

Les conversions de l'avion pour larguer une superbombe ont commencé en 1956. La même année, l'avion a été accepté par le client et testé. Une maquette exacte de la future bombe a même été larguée depuis le Tu-95V.

Le 17 octobre 1961, Nikita Khrouchtchev, à l'ouverture du 20e Congrès du PCUS, annonça que l'URSS testait avec succès de nouvelles armes nucléaires surpuissantes et que des munitions d'une puissance de 50 mégatonnes seraient bientôt prêtes. Khrouchtchev a également déclaré que l'Union soviétique possédait également une bombe de 100 mégatonnes, mais qu'elle n'allait pas encore la faire exploser. Quelques jours plus tard, l'Assemblée générale de l'ONU a demandé au gouvernement soviétique de ne pas tester une nouvelle mégabombe, mais cet appel n'a pas été entendu.

Description de la conception AN602

La bombe aérienne AN602 est un corps cylindrique avec une forme profilée caractéristique avec des ailerons de queue. Sa longueur est de 8 mètres, son diamètre maximum est de 2,1 mètres et il pèse 26,5 tonnes. Les dimensions de cette bombe reproduisent parfaitement les dimensions de la munition RN-202.

La puissance initialement estimée de la bombe aérienne était de 100 mégatonnes, mais elle a ensuite été réduite de près de moitié. La « Tsar Bomba » a été conçue comme une bombe à trois étages : le premier étage était une charge nucléaire (puissance d'environ 1,5 mégatonnes), elle déclenchait la réaction thermonucléaire du deuxième étage (50 mégatonnes), qui, à son tour, déclenchait la Réaction nucléaire Jekyll-Hyde de la troisième étape (également 50 mégatonnes). Cependant, la détonation de munitions de cette conception était presque garantie d'entraîner une contamination radioactive importante du site d'essai, ils ont donc décidé d'abandonner la troisième étape. L'uranium qu'il contenait a été remplacé par du plomb.

Réalisation des tests du Tsar Bomba et de leurs résultats

Malgré la modernisation antérieure, l'avion devait encore être repensé juste avant les tests eux-mêmes. Avec le système de parachute, les munitions réelles se sont révélées plus grosses et plus lourdes que prévu. Par conséquent, les volets de la soute à bombes ont dû être retirés de l’avion. De plus, il a été pré-peint avec de la peinture réfléchissante blanche.

Le 30 octobre 1961, un Tu-95B avec une bombe à bord décolle de l'aérodrome d'Olenya et se dirige vers le site d'essai de Novaya Zemlya. L'équipage du bombardier était composé de neuf personnes. L'avion laboratoire Tu-95A a également participé aux tests.

La bombe a été larguée deux heures après le décollage à une altitude de 10,5 mille mètres au-dessus de la cible conditionnelle située sur le territoire du terrain d'entraînement Dry Nose. La détonation a été effectuée par voie barothermique à une altitude de 4,2 mille mètres (selon d'autres sources, à une altitude de 3,9 mille mètres ou 4,5 mille mètres). Système de parachutes a ralenti la chute des munitions, il a donc fallu 188 secondes à l'A602 pour atteindre son altitude calculée. Pendant ce temps, l'avion porteur a réussi à s'éloigner de 39 km de l'épicentre. L'onde de choc a rattrapé l'avion à une distance de 115 km, mais il a réussi à poursuivre son vol et à rentrer sain et sauf à la base. Selon certaines sources, l'explosion de la Tsar Bomba aurait été bien plus puissante que prévu (58,6 voire 75 mégatonnes).

Les résultats des tests ont dépassé toutes les attentes. Après l'explosion, il s'est formé boule de feu Avec des diamètres de plus de neuf kilomètres, le champignon nucléaire atteignait une hauteur de 67 km et le diamètre de son « capuchon » était de 97 km. Le rayonnement lumineux pourrait provoquer des brûlures à une distance de 100 km et l'onde sonore a atteint l'île Dikson, située à 800 km à l'est de Novaya Zemlya. L'onde sismique générée par l'explosion a fait trois fois le tour du globe. Toutefois, les tests n’ont pas conduit à une contamination significative environnement. Les scientifiques ont atterri à l'épicentre deux heures après l'explosion.

Après les tests, le commandant et le navigateur de l'avion Tu-95V ont reçu les titres de Héros de l'Union soviétique, huit employés du KB-11 ont reçu les titres de Héros du travail socialiste et plusieurs dizaines d'autres scientifiques du bureau d'études ont reçu Lénine. Prix.

Lors des tests, tous les objectifs précédemment prévus ont été atteints. Les calculs théoriques des scientifiques ont été testés, les militaires ont acquis une expérience pratique dans l'utilisation d'armes sans précédent et les dirigeants du pays ont reçu un puissant atout en matière de politique étrangère et de propagande. Il a été clairement démontré que l’Union soviétique pouvait atteindre la parité avec les États-Unis en termes de létalité des armes nucléaires.

La bombe A602 n’était pas initialement destinée à un usage militaire pratique. Il s’agissait essentiellement d’une démonstration des capacités de l’industrie militaire soviétique. Le Tu-95V ne pourrait tout simplement pas voler avec une telle charge de combat vers le territoire américain - il n'aurait tout simplement pas assez de carburant. Néanmoins, les essais du « Tsar Bomba » ont produit le résultat souhaité en Occident : deux ans plus tard, en août 1963, un accord a été signé à Moscou entre l'URSS, la Grande-Bretagne et les États-Unis interdisant les essais nucléaires dans l'espace. sur terre ou sous l'eau. Depuis, uniquement sous terre explosions nucléaires. En 1990, l’URSS a annoncé un moratoire unilatéral sur tout essai nucléaire. Jusqu’à présent, la Russie y adhère.

À propos, après le test réussi du Tsar Bomba, des scientifiques soviétiques ont présenté plusieurs propositions visant à créer des armes thermonucléaires encore plus puissantes, de 200 à 500 mégatonnes, mais elles n'ont jamais été mises en œuvre. Les principaux opposants à de tels projets étaient les militaires. La raison était simple : de telles armes n’avaient aucune signification pratique. L'explosion de l'A602 a créé une zone de destruction complète, égale en superficie au territoire de Paris, alors pourquoi créer des munitions encore plus puissantes. De plus, ils ne disposaient tout simplement pas des moyens de livraison nécessaires, ni aviation stratégique, ni l'un ni l'autre missiles balistiquesÀ cette époque, ils ne pouvaient tout simplement pas soulever un tel poids.

Si vous avez des questions, laissez-les dans les commentaires sous l'article. Nous ou nos visiteurs serons ravis d'y répondre

mob_info